搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米四面体增强有机太阳电池光吸收及光伏性能研究

李雪 王亮 熊建桥 邵秋萍 蒋荣 陈淑芬

引用本文:
Citation:

金纳米四面体增强有机太阳电池光吸收及光伏性能研究

李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬

Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles

Li Xue, Wang Liang, Xiong Jian-Qiao, Shao Qiu-Ping, Jiang Rong, Chen Shu-Fen
PDF
导出引用
  • 为增强有机太阳能电池的光利用率,提高能量转换效率,本文合成了金四面体形状的纳米粒子,并用聚苯乙烯磺酸钠(PSS)包裹形成了核壳结构的金纳米四面体(Au@PSS tetrahedra NPs).将其掺杂到有机太阳能电池空穴提取层与活性层的界面处,利用表面等离子体共振效应来增强活性层对光的吸收,从而提高有机太阳能电池的能量转换效率.研究了掺杂浓度和PSS包裹厚度对电池性能的影响.结果表明:掺杂浓度为6%时,器件性能最佳,能量转换效率达到3.08%;PSS壳层厚度优化为2.5 nm时,转换效率达到3.65%,较标准电池提升了22.9%.电池性能的改善主要源于金四面体纳米粒子的共振吸收峰位于给体材料吸收谱范围内,纳米粒子的共振促进了给体的吸收,同时PSS壳层的引入促进了激子的解离和电荷的转移,上述因素的改善提升了电池的短路电流、填充因子和转换效率.
    Organic photovoltaic devices (OPVs) have attracted considerable attention because of their advantages of light-weight, low-cost, large-scale manufacturing process and mechanical flexibility. Unfortunately, in order to achieve efficient carrier extraction, the photoactive layer in OPVs must be rather thin (100 nm or less) due to its extremely low carrier mobilities for most of organic/polymer materials (on the order of 10-4 cm2/(V·s)). Such thin photoactive layers lead to a significant loss of incident sunlight, thereby improving a final low light absorption efficiency and power conversion efficiency (PCE). To promote the light absorption and thus enhance PCE of OPVs, Au tetrahedron nanoparticles (NPs) are synthesized in this work and then they are wrapped with poly (sodium 4-styrenesulfonate) (PSS) to form core-shell structure tetrahedron NPs (Au@PSS tetrahedron NPs). They are further incorporated into the interface of hole extraction layer and light photoactive layer to improve PCE of OPVs by enhancing their surface plasmon resonance effect-induced light absorption. The influences of doping concentration and PSS shell thickness of theses Au tetrahedron NPs on device performances are explored. The results indicate that the best performing PCE occurs at 6% concentration of Au@PSS tetrahedron NPs, reaching 3.08%, while it is further improved to 3.65% with an optimized PSS shell thickness of 2.5 nm, showing an enhancement factor of 22.9% compared with that of the control counterpart. The performance improvement of OPVs mainly originates from the promoted light absorption of donor due to the location of the resonant absorption peak of Au@PSS tetrahedron NPs in the absorption region of donor. Simultaneously, the introduction of the PSS shell promotes the dissociation of excitons and charge transfer. All of these contribute to the increasing of short-circuit current, fill factor and PCE of OPVs.
    • 基金项目: 国家重点研发计划(批准号:2017YFB0404501)、国家自然科学基金(批准号:61274065)、江苏省杰出青年基金(批准号:BK20160039)和南京工程学院创新基金重大项目(批准号:CKJA201402,CKJA201602)资助的课题.
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404501), the National Natural Science Foundation of China (Grant No. 61274065), the Outstanding Youth Foundation of Jiangsu Province of China (Grant No. BK20160039), and the Major Project of Innovation Fund of Nanjing Institute of Technology, China (Grant Nos. CKJA201402, CKJA201602).
    [1]

    Du P, Jing P T, Li D, Cao Y H, Liu Z Y, Sun Z C 2015 Small 11 2454

    [2]

    Kakavelakis G, Vangelidis I, Heuer-Jungemann A, Kanaras G A, Lidorikis E, Stratakis E, Kymakis E 2016 Adv. Energy Mater. 6 1501640

    [3]

    Lu L Y, Luo Z Q, Xu T, Yu L P 2013 Nano Lett. 13 59

    [4]

    He Z, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 593

    [5]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [6]

    Sun Y, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J 2012 Nat. Mater. 11 44

    [7]

    Cui Y, Yao H F, Yang C Y, Zhang S Q, Hou J H 2018 Acta Polym. Sin. 2 223

    [8]

    Westphalen M, Kreibig U, Rostalski J, Lüth H, Meissner D 2000 Sol. Energy Mater. Sol. Cells 61 97

    [9]

    Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519

    [10]

    Morfa A J, Rowlen K L, Reilly T H, Romero M J 2008 Appl. Phys. Lett. 92 013504

    [11]

    Yang X, Chueh C C, Li C Z, Yip H L, Yin P, Chen H Z, Chen W C, Jen A K Y 2013 Adv. Energy Mater. 3 666

    [12]

    Wang C C D, Choy W C H, Duan C, Fung D D S, Sha W E I, Xie F X, Huang F, Cao Y 2012 J. Mater. Chem. 22 1206

    [13]

    Xie F X, Choy W C H, Sha W E I, Zhang D, Zhang S Q, Li X C, Leung C W, Hou J H 2013 Energy Environ. Sci. 6 3372

    [14]

    Wang L, Yao Y, Ma X Q, Huang C T, Liu Z W, Yu H T, Wang M H, Zhang Q, Li X, Chen S F, Huang W 2018 Org. Electron. 61 96

    [15]

    Hao H, Wang L, Ma Xiao Q, Cao K, Yu H T, Wang M H, Gu W W, Zhu R, Anwar M S, Chen S F, Huang W 2018 Solar RRL 2 1800061

    [16]

    Peng L, Zhang R, Chen S F, Zhang Q, Deng L L, Feng X M, Huang W 2016 RSC Adv. 6 90944

    [17]

    Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959

    [18]

    Chen S F, Cheng F, Mei Y, Peng B, Kong M, Hao J Y, Zhang R, Xiong Q H, Wang L H, Huang W 2014 Appl. Phys. Lett. 104 213903

    [19]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [20]

    Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X G, Wang L H, Huang W 2015 Chin. Phys. B 24 045201

    [21]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 ACS Nano 8 3302

    [22]

    Ng A, Yiu W K, Foo Y, Shen Q, Bejaoui A, Zhao Y, Gokkaya H C, Djurisšić A B, Zapien J A, Chan W K, Surya C 2014 ACS Appl. Mater. Interfaces 6 20676

    [23]

    Zhang R, Zhou Y F, Peng L, Li X, Chen S F, Feng X M, Guan Y Q, Huang W 2016 Sci. Rep. 6 25036

  • [1]

    Du P, Jing P T, Li D, Cao Y H, Liu Z Y, Sun Z C 2015 Small 11 2454

    [2]

    Kakavelakis G, Vangelidis I, Heuer-Jungemann A, Kanaras G A, Lidorikis E, Stratakis E, Kymakis E 2016 Adv. Energy Mater. 6 1501640

    [3]

    Lu L Y, Luo Z Q, Xu T, Yu L P 2013 Nano Lett. 13 59

    [4]

    He Z, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 593

    [5]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [6]

    Sun Y, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J 2012 Nat. Mater. 11 44

    [7]

    Cui Y, Yao H F, Yang C Y, Zhang S Q, Hou J H 2018 Acta Polym. Sin. 2 223

    [8]

    Westphalen M, Kreibig U, Rostalski J, Lüth H, Meissner D 2000 Sol. Energy Mater. Sol. Cells 61 97

    [9]

    Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519

    [10]

    Morfa A J, Rowlen K L, Reilly T H, Romero M J 2008 Appl. Phys. Lett. 92 013504

    [11]

    Yang X, Chueh C C, Li C Z, Yip H L, Yin P, Chen H Z, Chen W C, Jen A K Y 2013 Adv. Energy Mater. 3 666

    [12]

    Wang C C D, Choy W C H, Duan C, Fung D D S, Sha W E I, Xie F X, Huang F, Cao Y 2012 J. Mater. Chem. 22 1206

    [13]

    Xie F X, Choy W C H, Sha W E I, Zhang D, Zhang S Q, Li X C, Leung C W, Hou J H 2013 Energy Environ. Sci. 6 3372

    [14]

    Wang L, Yao Y, Ma X Q, Huang C T, Liu Z W, Yu H T, Wang M H, Zhang Q, Li X, Chen S F, Huang W 2018 Org. Electron. 61 96

    [15]

    Hao H, Wang L, Ma Xiao Q, Cao K, Yu H T, Wang M H, Gu W W, Zhu R, Anwar M S, Chen S F, Huang W 2018 Solar RRL 2 1800061

    [16]

    Peng L, Zhang R, Chen S F, Zhang Q, Deng L L, Feng X M, Huang W 2016 RSC Adv. 6 90944

    [17]

    Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959

    [18]

    Chen S F, Cheng F, Mei Y, Peng B, Kong M, Hao J Y, Zhang R, Xiong Q H, Wang L H, Huang W 2014 Appl. Phys. Lett. 104 213903

    [19]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [20]

    Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X G, Wang L H, Huang W 2015 Chin. Phys. B 24 045201

    [21]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 ACS Nano 8 3302

    [22]

    Ng A, Yiu W K, Foo Y, Shen Q, Bejaoui A, Zhao Y, Gokkaya H C, Djurisšić A B, Zapien J A, Chan W K, Surya C 2014 ACS Appl. Mater. Interfaces 6 20676

    [23]

    Zhang R, Zhou Y F, Peng L, Li X, Chen S F, Feng X M, Guan Y Q, Huang W 2016 Sci. Rep. 6 25036

  • [1] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展. 物理学报, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [2] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [3] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池. 物理学报, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [4] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [5] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [6] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [7] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [8] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [9] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [10] 孙龙, 任昊, 冯大政, 王石语, 邢孟道. 一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性. 物理学报, 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [11] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [12] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [13] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响. 物理学报, 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [14] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响. 物理学报, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [15] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [16] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [17] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [18] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能. 物理学报, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [19] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [20] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析. 物理学报, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
计量
  • 文章访问数:  5006
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 修回日期:  2018-10-01
  • 刊出日期:  2019-12-20

/

返回文章
返回