搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量

陈传廷 姚钢 段明超 管丹丹 李耀义 郑浩 王世勇 刘灿华 贾金锋

引用本文:
Citation:

表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量

陈传廷, 姚钢, 段明超, 管丹丹, 李耀义, 郑浩, 王世勇, 刘灿华, 贾金锋

In-situ measurement of diamagnetic response of potassium-adsorbed multi-layer FeSe ultrathin films on SrTiO3(001) substrate

Chen Chuan-Ting, Yao Gang, Duan Ming-Chao, Guan Dan-Dan, Li Yao-Yi, Zheng Hao, Wang Shi-Yong, Liu Can-Hua, Jia Jin-Feng
PDF
导出引用
  • SrTiO3(001)单晶表面上生长的单层FeSe薄膜显示出了超乎寻常的高温超导电性,其超导增强机制的一个重要因素是电子由衬底转移到了单层FeSe薄膜当中.基于此认识,研究者们在吸附了钾(K)原子的多层FeSe薄膜表面上观察到了类似超导能隙的隧穿能谱和光电子能谱.但这种自上而下的电子掺入方式在多层FeSe薄膜表面上可能引起的高温超导电性,还缺乏零电阻或迈斯纳效应等物性测量实验的直接证实.本研究利用自行研制的一台特殊的多功能扫描隧道显微镜,在生长于SrTiO3(001)衬底上的多层FeSe薄膜表面上,不但观察到了超导能隙随K吸附量的变化,而且利用原位双线圈互感测量技术,成功地的观察到了该薄膜的抗磁响应,并由此确定了该薄膜样品呈现迈斯纳效应的超导转变温度为23.9 K.其穿透深度随温度的变化呈二次幂指数关系,表明该体系的超导序参量很可能具有S±配对对称性.
    A single-unit-cell layer FeSe ultrathin film grown on SrTiO3(001) substrate exhibits remarkable high-temperature superconductivity, which has aroused intensive research interest. Electron transfer from the substrate to the FeSe layer has been shown to play an indispensable role in enhancing the extraordinary superconductivity. With this idea, researchers have tried to search for new high-temperature superconducting material systems including K-adsorbed multi-layer FeSe ultrathin films, on which superconducting-like energy gaps have been observed with scanning tunneling spectroscopy and photoelectron spectroscopy. However, the high-temperature superconductivity of the multi-layer FeSe ultrathin films has not yet been confirmed by directly observing the zero resistance or Meissner effect. With a self-developed multi-functional scanning tunneling microscope (STM+), which enables not only usual STM functionality, but also in situ two-coil mutual inductance measurement, we successfully observe the diamagnetic response of a K-adsorbed multilayer FeSe ultrathin film grown on a SrTiO3(001) substrate, and thus determine its transition temperature to be 23.9 K. Moreover, we calculate the penetration depth of the film from the measured results and find that its low-temperature behavior exhibits a quadratic variation, which strongly indicates that the order parameter of the superconducting K-adsorbed multi-layer FeSe ultrathin film has an S± pairing symmetry.
      通信作者: 刘灿华, canhualiu@sjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300403,2016YFA0301003)、国家自然科学基金(批准号:11521404,11574202,11634009,11655002,11504230,U1632102)和上海市科委科技基金(批准号:15JC1402300,16DZ2260200)资助的课题.
      Corresponding author: Liu Can-Hua, canhualiu@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300403, 2016YFA0301003), the National Natural Science Foundation of China (Grant Nos. 11521404, 11574202, 11634009, 11655002, 11504230, U1632102), and the Funds of Shanghai Committee of Science and Technology, China (Grant Nos. 15JC1402300, 16DZ2260200).
    [1]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [2]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [3]

    Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301

    [4]

    Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040

    [5]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285

    [6]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [7]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [8]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [9]

    Coh S, Cohen M L, Louie S G 2015 New J. Phys. 17 073027

    [10]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, Zhao J 2016 Phys. Rev. Lett. 116 107001

    [11]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nature Mater. 12 634

    [12]

    Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004

    [13]

    Cao H Y, Tan S, Xiang H, Feng D L, Gong X G 2014 Phys. Rev. B 89 014501

    [14]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [15]

    Zhang W, Li Z, Li F, Zhang H, Peng J, Tang C, Wang Q, He K, Chen X, Wang L, Ma X, Xue Q K 2014 Phys. Rev. B 89 060506

    [16]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [17]

    Bang J, Li Z, Sun Y Y, Samanta A, Zhang Y Y, Zhang W, Wang L, Chen X, Ma X, Xue Q K, Zhang S B 2013 Phys. Rev. B 87 220503

    [18]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775

    [19]

    Tang C, Zhang D, Zang Y, Liu C, Zhou G, Li Z, Zheng C, Hu X, Song C, Ji S, He K, Chen X, Wang L, Ma X, Xue Q K 2015 Phys. Rev. B 92 180507

    [20]

    Wen C H, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nature Commun. 7 10840

    [21]

    Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001

    [22]

    Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507

    [23]

    Zhang W H, Liu X, Wen C H, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [24]

    Zhang M L, Ge J F, Duan M C, Yao G, Liu Z L, Guan D D, Li Y Y, Qian D, Liu C H, Jia J F 2016 Acta Phys. Sin. 65 127401 (in Chinese) [张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋 2016 物理学报 65 127401]

    [25]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902

    [26]

    Ge J F, Liu Z L, Gao C L, Qian D, Liu C, Jia J F 2015 Rev. Sci. Instrum 86 053903

    [27]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys. Condens. Matter 26 265002

    [28]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291

    [29]

    Leemann C, Lerch P, Racine G, Martinoli P 1986 Phys. Rev. Lett. 56 1291

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221

    [31]

    Kogan V G, Prozorov R, Mishra V 2013 Phys. Rev. B 88 224508

    [32]

    Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Liu Y, Lograsso T A, Straszheim W E, Mishra V, Maiti S, Hirschfeld P J, Prozorov R 2016 Sci. Adv. 2 e1600807

    [33]

    Cho K, Fente A, Teknowijoyo S, Tanatar M A, Joshi K R, Nusran N M, Kong T, Meier W R, Kaluarachchi U, Guillamón I, Suderow H, Bud’ko S L, Canfield P C, Prozorov R 2017 Phys. Rev. B 95 100502

    [34]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505

    [35]

    Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld Peter J, Mazin I I, Lin H, Zhu X, Wen H H 2017 Nature Phys. 14 134

  • [1]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [2]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [3]

    Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301

    [4]

    Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040

    [5]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285

    [6]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [7]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [8]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [9]

    Coh S, Cohen M L, Louie S G 2015 New J. Phys. 17 073027

    [10]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, Zhao J 2016 Phys. Rev. Lett. 116 107001

    [11]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nature Mater. 12 634

    [12]

    Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004

    [13]

    Cao H Y, Tan S, Xiang H, Feng D L, Gong X G 2014 Phys. Rev. B 89 014501

    [14]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [15]

    Zhang W, Li Z, Li F, Zhang H, Peng J, Tang C, Wang Q, He K, Chen X, Wang L, Ma X, Xue Q K 2014 Phys. Rev. B 89 060506

    [16]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [17]

    Bang J, Li Z, Sun Y Y, Samanta A, Zhang Y Y, Zhang W, Wang L, Chen X, Ma X, Xue Q K, Zhang S B 2013 Phys. Rev. B 87 220503

    [18]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775

    [19]

    Tang C, Zhang D, Zang Y, Liu C, Zhou G, Li Z, Zheng C, Hu X, Song C, Ji S, He K, Chen X, Wang L, Ma X, Xue Q K 2015 Phys. Rev. B 92 180507

    [20]

    Wen C H, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nature Commun. 7 10840

    [21]

    Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001

    [22]

    Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507

    [23]

    Zhang W H, Liu X, Wen C H, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [24]

    Zhang M L, Ge J F, Duan M C, Yao G, Liu Z L, Guan D D, Li Y Y, Qian D, Liu C H, Jia J F 2016 Acta Phys. Sin. 65 127401 (in Chinese) [张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋 2016 物理学报 65 127401]

    [25]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902

    [26]

    Ge J F, Liu Z L, Gao C L, Qian D, Liu C, Jia J F 2015 Rev. Sci. Instrum 86 053903

    [27]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys. Condens. Matter 26 265002

    [28]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291

    [29]

    Leemann C, Lerch P, Racine G, Martinoli P 1986 Phys. Rev. Lett. 56 1291

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221

    [31]

    Kogan V G, Prozorov R, Mishra V 2013 Phys. Rev. B 88 224508

    [32]

    Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Liu Y, Lograsso T A, Straszheim W E, Mishra V, Maiti S, Hirschfeld P J, Prozorov R 2016 Sci. Adv. 2 e1600807

    [33]

    Cho K, Fente A, Teknowijoyo S, Tanatar M A, Joshi K R, Nusran N M, Kong T, Meier W R, Kaluarachchi U, Guillamón I, Suderow H, Bud’ko S L, Canfield P C, Prozorov R 2017 Phys. Rev. B 95 100502

    [34]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505

    [35]

    Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld Peter J, Mazin I I, Lin H, Zhu X, Wen H H 2017 Nature Phys. 14 134

  • [1] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240171
    [2] 张若舟, 秦明阳, 张露, 尤立星, 董超, 沙鹏, 袁洁, 金魁. 超导薄膜磁场穿透深度的双线圈互感测量. 物理学报, 2020, 69(4): 047401. doi: 10.7498/aps.69.20191758
    [3] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [4] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长. 物理学报, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [5] 杨卓群, 吴亚波, 鲁军旺, 张成园, 张雪. Lifshitz时空s波超导模型的关联长度和穿透深度. 物理学报, 2016, 65(4): 040401. doi: 10.7498/aps.65.040401
    [6] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [7] 卢小可, 郭茂田, 苏建坡, 弓巧侠, 武进科, 刘建立, 陈明, 马凤英. 太赫兹波段介质微腔光学特性研究. 物理学报, 2013, 62(8): 084208. doi: 10.7498/aps.62.084208
    [8] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应. 物理学报, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [9] 马 强, 江建军, 别少伟, 杜 刚, 冯则坤, 何华辉. CoFeB/MgO不连续多层纳米软磁薄膜微波电磁特性. 物理学报, 2008, 57(10): 6577-6581. doi: 10.7498/aps.57.6577
    [10] 李国俊, 康学亮, 李永平, 吕 超, 范正修, 丁 磊, 隋 展. 反射型磁光多层膜隔离器的频率响应及宽容性研究. 物理学报, 2007, 56(5): 2945-2950. doi: 10.7498/aps.56.2945
    [11] 张权义, 吴耀宇, 彭 政, 刘 锐, 陆坤权, 厚美瑛. 重力驱动下运动物体在颗粒介质中的最大穿透深度. 物理学报, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
    [12] 王瑞峰. A-B效应的动力学机制及其实验验证方案. 物理学报, 2005, 54(10): 4532-4537. doi: 10.7498/aps.54.4532
    [13] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [14] 林应斌, 赖 恒, 黄志高, 都有为. MnBi磁性多层膜磁光科尔效应的数值模拟. 物理学报, 2004, 53(2): 606-613. doi: 10.7498/aps.53.606
    [15] 冯 倩, 黄志高, 都有为. 磁性多层膜磁特性的表面效应. 物理学报, 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
    [16] 王瑞峰, 赵士平, 徐凤枝, 陈赓华, 杨乾声. 超导体磁场穿透深度测量中的数据分析问题. 物理学报, 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [17] 刘颖力, 张怀武, 王豪才, 钟智勇. 多层周期薄膜中静磁表面波宽度模色散特性研究. 物理学报, 1999, 48(13): 98-104. doi: 10.7498/aps.48.98
    [18] 董正超, 赵树宇. 磁性多层薄膜系统中的巨磁电阻效应. 物理学报, 1999, 48(3): 511-519. doi: 10.7498/aps.48.511
    [19] 董正超. 磁多层金属系统的界面反射效应. 物理学报, 1999, 48(11): 2116-2124. doi: 10.7498/aps.48.2116
    [20] 孙克, 冯远冰, 罗河烈, 李士, 邵涵如. 高密度磁记录材料——金属磁粉的穆斯堡尔效应研究. 物理学报, 1984, 33(5): 701-705. doi: 10.7498/aps.33.701
计量
  • 文章访问数:  4881
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-12
  • 修回日期:  2018-09-14
  • 刊出日期:  2019-11-20

/

返回文章
返回