搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd含量对Bi6−xNdxFe1.4Ni0.6Ti3O18多晶材料多铁性的影响

陈诚 卢建安 杜微 王伟 毛翔宇 陈小兵

引用本文:
Citation:

Nd含量对Bi6−xNdxFe1.4Ni0.6Ti3O18多晶材料多铁性的影响

陈诚, 卢建安, 杜微, 王伟, 毛翔宇, 陈小兵

Effects of Nd-doping on multiferroic properties of Bi6−xNdxFe1.4Ni0.6Ti3O18 polycrystalline

Chen Cheng, Lu Jian-An, Du Wei, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing
PDF
HTML
导出引用
  • 采用柠檬酸-硝酸盐法制备了Bi6−xNdxFe1.4Ni0.6Ti3O18 (BNFNT-x, x = 0.00, 0.10, 0.20, 0.25和0.30)前驱液, 再经过干燥、烧结过程制备了单相多晶材料. 研究发现, 少量Nd掺杂有助于提高样品的铁电性能, BNFNT-0.25样品的铁电性能(2Pr)最大, 约达到19.7 ${\text{μ}}{\rm C/cm}^2$. 室温下BNFNT-0.20样品磁性能(2Ms)最大约达到 4.132 emu/g (1 emu/g = 10–3 A·m2/g). 变温介电损耗结果表明Nd掺杂降低了Fe3+和Fe2+间的电子转移或跃迁的激活能. X射线光电子能谱结果表明小量Nd掺杂有助于增强Bi离子稳定性, 对改善样品的铁电性能有积极意义.
    Single phase polycrystalline Nd-modified BNFNT-x series samples are obtained from the precursors of the same chemical formula, and prepared by using the citric acid-nitrate method. The X-ray photoelectron spectroscopy measurement indicates that a slight Nd modification does not exert significant influence on the stability of the octahedral FeO6, nor NiO6 nor TiO6. When the molar concentration of Nd exceeds 0.25, the stability of BiO layer is cemented and conducive to the insulating role of BiO layer. It is seen that a small quantity of Nd substitution for bismuth can improve the ferroelectric polarization (2Pr) of ~ 19.7 $ \mu {\rm C/cm }^2$. The room-temperature magnetization (2Ms) can reach a maximal value of ~ 4.132 emu/g (1 emu/g = 10−3 A·m2/g)in the BNFNT-0.20 sample. Two anomalies are observed in the temperature-dependent dielectric loss spectrum: one is situated in the temperature range from 200 K to 400 K and the other is located in the vicinity of 900 K. It is considered that the loss anomaly found near 900 K might be associated with the viscous motion of ferroelectric domain walls. In addition, the loss peak shown in a temperature range from 200 K to 400 K shifts toward the higher temperature with measuring frequency increasing, indicating the characteristics of dielectric relaxor behavior. The activation energy is evaluated to be 0.287−0.366 eV, which suggests that the relaxor is associated with the electrons transfer and hop between Fe3+ and Fe2+. The room-temperature magnetization (2Ms) has reached a maximal value of ~ 4.132 emu/g in the BNFNT-0.20 sample. The lattice distortion due to the introduction of Nd changes the angle of such antiferromagnetic coupling bonds as Fe3+—O—Fe3+, Fe3+—O—Ni3+ and Ni3+—O—Ni3+, which leads the AFM spin states to break, and thus increases the magnetic properties. While with further modification of Nd, the drastic lattice distortion reduces the occupation of the B-sites of the magnetic ions, which might be responsible for further deteriorating the magnetic properties.
      通信作者: 毛翔宇, xymao@yzu.edu.cn ; 陈小兵, xbchen@yzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51402256, 11374227)资助的课题.
      Corresponding author: Mao Xiang-Yu, xymao@yzu.edu.cn ; Chen Xiao-Bing, xbchen@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402256, 11374227).
    [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Vieland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [2]

    Kimura T, Kawamoto S, Yamada Y, Azuma M, Takano M, Tokura Y Y 2003 Phys. Rev. B 67 180401Google Scholar

    [3]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889Google Scholar

    [4]

    Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567Google Scholar

    [5]

    Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M 2002 Appl. Phys. Lett. 80 2746Google Scholar

    [6]

    Noguchi Y, Miyayama M 2001 Appl. Phys. Lett. 78 1903Google Scholar

    [7]

    Noguchi Y J, Goshima Y, Miyayama M, Miwa I 2000 Jpn. J. Appl. Phys. 39 L1259Google Scholar

    [8]

    Watanabe T, Funakubo H, Osada M, Noguchi Y, Miyayama M 2002 Appl. Phys. Lett. 80 100Google Scholar

    [9]

    Yao Y Y, Song C H, Bao P, Su D, Lu X M, Zhu J S, Wang Y N 2004 J. Appl. Phys. 95 3126Google Scholar

    [10]

    Kuble F, Schmid H 1992 Ferroelectrics 129 101Google Scholar

    [11]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901Google Scholar

    [12]

    Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402Google Scholar

    [13]

    毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵 2015 物理学报 64 217701Google Scholar

    Mao X Y, Zou B W, Sun H, Chen C Y, Chen X B 2015 Acta Phys. Sin. 64 217701Google Scholar

    [14]

    Li X N, Zhu Z, Li F, Peng R R, Zhai X F, Fu Z P, Lu Y L 2015 J. Eur. Ceram. Soc. 35 3437Google Scholar

    [15]

    Xiong P, Yang J, Qin Y F, Huang W J, Tang X W, Yin L H, Song W H, Dai J M, Zhu X B, Sun Y P 2017 Ceram. Int. 43 4405Google Scholar

    [16]

    Fouskove A, Cross L E 1970 J. Appl. Phys. 41 2834Google Scholar

    [17]

    Lu W P, Mao X Y, Chen X B 2004 J. Appl. Phys. 95 1973Google Scholar

    [18]

    Wang J L, Li L, Peng R R, Fu Z P, Liu M, Lu Y L 2015 J. Am. Ceram. Soc. 98 1528Google Scholar

    [19]

    Bai W, Chen C, Yang J, Zhang Y Y, Qi R J, Huang R, Tang X D, Duan C G, Chu J H 2015 Sci. Rep. 5 17846Google Scholar

    [20]

    Yu Z H, Yu B Y, Liu Y, Zhou P, Jing J, Lu Y X, Sun H, Chen X B, Ma Z J, Zhang T J, Huang C W, Qi Y J 2017 Ceram. Int. 43 14996Google Scholar

    [21]

    Liu S, Yan S Q, Luo H, Yao L L, Hu Z W, Huang S X, Deng L W 2018 J. Mater. Sci. 53 1014Google Scholar

    [22]

    Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402Google Scholar

    [23]

    Srinivas A, Kumar M M, Suryanarayana S V, Bhimasankaram T 1999 Mater. Res. Bull. 34 989Google Scholar

    [24]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121Google Scholar

    [25]

    Li X N, Ju Z, Li F, Huang Y, Xie Y M, Fu Z P, Knize R J, Lu Y L 2014 J. Mater. Chem. 2 13366Google Scholar

    [26]

    Mao X Y, Mao F W, Chen X B 2006 Integr. Ferroelectr. 79 155Google Scholar

    [27]

    Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413Google Scholar

    [28]

    Wang C H, Liu Z F, Yu L, Tian Z M, Yuan S L 2011 Mater. Sci. Eng. B 176 1243Google Scholar

    [29]

    Zuo X Z, Yang J, Song D P, Yuan B, Tang X W, Zhang K J, Zhu X B, Song W H, Dai J M, Sun Y P 2014 J. Appl. Phys. 116 759Google Scholar

    [30]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [31]

    Hussain S, Hasanain S K, Jaffari G H, Faridi S, Rehman F, Abbas T A, Shah S I 2013 J. Am. Ceram. Soc. 96 3141Google Scholar

    [32]

    Kojima S, Imaizumi R, Hamazaki S, Takashige M 1994 Jpn J. Appl. Phys. Part 1 33 5559Google Scholar

    [33]

    Zhang S T, Chen Y F, Liu Z G, Ming N B 2005 J. Appl. Phys. 97 104106Google Scholar

    [34]

    Mao X Y, Sun H, Wang W, Lu Y L, Chen X B 2012 Solid State Commun. 152 483Google Scholar

    [35]

    Mao X Y, Wang W, Sun H, Lu Y L, Chen X B 2012 Integr. Ferroelectr. 132 16Google Scholar

    [36]

    Wu Y Y, Zhang D M, Yu J, Wang Y B 2009 Mater. Chem. Phys. 113 422Google Scholar

    [37]

    Shulman H S, Damjanovic D, Setter N 2000 J. Am. Ceram. Soc. 83 528Google Scholar

    [38]

    Bai W, Chen G, Zhu J Y, Yang J, Lin T, Meng X J, Tang X D, Duan C G, Chu J H 2012 Appl. Phys. Lett. 100 082902Google Scholar

    [39]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kito H 2005 Nature 436 1136Google Scholar

    [40]

    Liu Y Y, Chen X M, Liu X Q, Li L 2007 Appl. Phys. Lett. 90 192905Google Scholar

    [41]

    Maglione M, Subramanian M A 2008 Appl. Phys. Lett. 93 032902Google Scholar

    [42]

    Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, Shinde A B 2013 Appl. Phys. Lett. 103 122901Google Scholar

    [43]

    Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta Materialia 57 5137Google Scholar

    [44]

    Suryanarayana S V, Srinivas A, Singh R S 1999 Proc. SPIE 3903 232Google Scholar

    [45]

    雷志威 2015 博士学位论文(合肥: 中国科学技术大学)

    Lei Z W 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • 图 2  BNFNT-x (x = 0.00, 0.10, 0.20, 0.25和0.30)样品断面的SEM图像

    Fig. 2.  SEM micrographs of fresh fracture surfaces of BNFNT-x (x = 0.00, 0.10, 0.20, 0.25 and 0.30) samples.

    图 1  室温下BNFNT-x (x = 0.00, 0.10, 0.20, 0.25和0.30)的XRD图谱

    Fig. 1.  XRD patterns of BNFNT-x (x = 0.00, 0.10, 0.20, 0.25 and 0.30) at room temperature.

    图 3  (a) 室温下BNFNT-x样品的拉曼谱; (b) Nd含量对BNFNT-x样品中与BiO层相关的拉曼峰的影响

    Fig. 3.  (a) Raman spectra of BNFNT-x at room temperature; (b) effect of Nd content on Raman peaks associated with BiO layers in BNFNT-x samples.

    图 5  (a) BNFNT-x 样品2Pr-E曲线; (b)电场约为140 kV/cm下Nd含量对2Pr的影响; (c)电场约为190 kV/cm下Nd含量对2Pr的影响

    Fig. 5.  (a) The 2Pr-E curves of BNFNT-x samples; (b) dependence of 2Pr of BNFNT-x ceramics on Nd content x under the electric filed about 140 kV/cm; (c) dependence of 2Pr of BNFNT-x ceramics on Nd content x under the electric filed about 190 kV/cm.

    图 4  室温下BNFNT-x陶瓷样品的电滞回线

    Fig. 4.  Ferroelectric hysteresis loop of BNFNT-x ceramic samples at room temperature.

    图 7  (a)—(e)测量频率为1—492.2 kHz时BNFNT-x样品的介电损耗峰 (插图为BNFNT-x样品相应的激活能)(a) Bi6Fe1.4Ni0.6Ti3O18; (b) Bi5.9Nd0.1Fe1.4Ni0.6Ti3O18; (c) Bi5.8Nd0.2Fe1.4Ni0.6Ti3O18; (d) Bi5.75Nd0.25Fe1.4Ni0.6Ti3O18; (e) Bi5.7Nd0.3Fe1.4Ni0.6Ti3O18; (f) BNFNT-x样品Nd含量对激活能的影响

    Fig. 7.  (a)−(e) Dielectric loss peak with the measurement frequencies from 1 kHz to 492.2 kHz (inset is the corresponding activation energy of BNFNT-x sample): (a) Bi6Fe1.4Ni0.6Ti3O18; (b) Bi5.9Nd0.1Fe1.4Ni0.6Ti3O18; (c) Bi5.8Nd0.2Fe1.4Ni0.6Ti3O18;(d) Bi5.75Nd0.25Fe1.4Ni0.6Ti3O18; (e) Bi5.7Nd0.3Fe1.4Ni0.6Ti3O18; (f) dependence of activation energy of BNFNT-x ceramics on Nd content x.

    图 6  27.17 kHz频率下120—1000 K温度范围内所测量的介电损耗峰(插图为BNFNT-x样品200—400 K的放大部分)

    Fig. 6.  Dielectric loss peak with the measurement temperature from 120 to 1000 K at the frequency of 27.17 kHz. Inset is the corresponding enlarge part of BNFNT-x sample under the temperature from 200 to 400 K.

    图 8  (a)室温下BNFNT-x样品的磁滞回线 (插图为中部放大图像); (b) BNFNT-x样品2Ms随Nd含量的变化

    Fig. 8.  (a) At room temperature, magnetic hysteresis of BNFNT-x samples (inset is the enlarged central part of the M-H curve); (b) dependence of 2Ms of BNFNT-x on the Nd content.

    图 9  BNFNT-x样品的FC和ZFC磁化曲线 (a) x = 0.00; (b) x = 0.10; (c) x = 0.20; (d) x = 0.25; (e) x = 0.30

    Fig. 9.  FC and ZFC magnetization curves of the BNFNT-x sample: (a) x = 0.00; (b) x = 0.10; (c) x = 0.20; (d) x = 0.25; (e) x = 0.30.

    图 10  (a) BNFNT-x样品中Bi的电子能谱图; (b) BNFNT-x样品中Fe的电子能谱图

    Fig. 10.  (a) Electron spectra of Bi in BNFNT-x samples; (b) electron spectra of Fe in BNFNT-x samples.

  • [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Vieland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [2]

    Kimura T, Kawamoto S, Yamada Y, Azuma M, Takano M, Tokura Y Y 2003 Phys. Rev. B 67 180401Google Scholar

    [3]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889Google Scholar

    [4]

    Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567Google Scholar

    [5]

    Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M 2002 Appl. Phys. Lett. 80 2746Google Scholar

    [6]

    Noguchi Y, Miyayama M 2001 Appl. Phys. Lett. 78 1903Google Scholar

    [7]

    Noguchi Y J, Goshima Y, Miyayama M, Miwa I 2000 Jpn. J. Appl. Phys. 39 L1259Google Scholar

    [8]

    Watanabe T, Funakubo H, Osada M, Noguchi Y, Miyayama M 2002 Appl. Phys. Lett. 80 100Google Scholar

    [9]

    Yao Y Y, Song C H, Bao P, Su D, Lu X M, Zhu J S, Wang Y N 2004 J. Appl. Phys. 95 3126Google Scholar

    [10]

    Kuble F, Schmid H 1992 Ferroelectrics 129 101Google Scholar

    [11]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901Google Scholar

    [12]

    Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402Google Scholar

    [13]

    毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵 2015 物理学报 64 217701Google Scholar

    Mao X Y, Zou B W, Sun H, Chen C Y, Chen X B 2015 Acta Phys. Sin. 64 217701Google Scholar

    [14]

    Li X N, Zhu Z, Li F, Peng R R, Zhai X F, Fu Z P, Lu Y L 2015 J. Eur. Ceram. Soc. 35 3437Google Scholar

    [15]

    Xiong P, Yang J, Qin Y F, Huang W J, Tang X W, Yin L H, Song W H, Dai J M, Zhu X B, Sun Y P 2017 Ceram. Int. 43 4405Google Scholar

    [16]

    Fouskove A, Cross L E 1970 J. Appl. Phys. 41 2834Google Scholar

    [17]

    Lu W P, Mao X Y, Chen X B 2004 J. Appl. Phys. 95 1973Google Scholar

    [18]

    Wang J L, Li L, Peng R R, Fu Z P, Liu M, Lu Y L 2015 J. Am. Ceram. Soc. 98 1528Google Scholar

    [19]

    Bai W, Chen C, Yang J, Zhang Y Y, Qi R J, Huang R, Tang X D, Duan C G, Chu J H 2015 Sci. Rep. 5 17846Google Scholar

    [20]

    Yu Z H, Yu B Y, Liu Y, Zhou P, Jing J, Lu Y X, Sun H, Chen X B, Ma Z J, Zhang T J, Huang C W, Qi Y J 2017 Ceram. Int. 43 14996Google Scholar

    [21]

    Liu S, Yan S Q, Luo H, Yao L L, Hu Z W, Huang S X, Deng L W 2018 J. Mater. Sci. 53 1014Google Scholar

    [22]

    Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402Google Scholar

    [23]

    Srinivas A, Kumar M M, Suryanarayana S V, Bhimasankaram T 1999 Mater. Res. Bull. 34 989Google Scholar

    [24]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121Google Scholar

    [25]

    Li X N, Ju Z, Li F, Huang Y, Xie Y M, Fu Z P, Knize R J, Lu Y L 2014 J. Mater. Chem. 2 13366Google Scholar

    [26]

    Mao X Y, Mao F W, Chen X B 2006 Integr. Ferroelectr. 79 155Google Scholar

    [27]

    Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413Google Scholar

    [28]

    Wang C H, Liu Z F, Yu L, Tian Z M, Yuan S L 2011 Mater. Sci. Eng. B 176 1243Google Scholar

    [29]

    Zuo X Z, Yang J, Song D P, Yuan B, Tang X W, Zhang K J, Zhu X B, Song W H, Dai J M, Sun Y P 2014 J. Appl. Phys. 116 759Google Scholar

    [30]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [31]

    Hussain S, Hasanain S K, Jaffari G H, Faridi S, Rehman F, Abbas T A, Shah S I 2013 J. Am. Ceram. Soc. 96 3141Google Scholar

    [32]

    Kojima S, Imaizumi R, Hamazaki S, Takashige M 1994 Jpn J. Appl. Phys. Part 1 33 5559Google Scholar

    [33]

    Zhang S T, Chen Y F, Liu Z G, Ming N B 2005 J. Appl. Phys. 97 104106Google Scholar

    [34]

    Mao X Y, Sun H, Wang W, Lu Y L, Chen X B 2012 Solid State Commun. 152 483Google Scholar

    [35]

    Mao X Y, Wang W, Sun H, Lu Y L, Chen X B 2012 Integr. Ferroelectr. 132 16Google Scholar

    [36]

    Wu Y Y, Zhang D M, Yu J, Wang Y B 2009 Mater. Chem. Phys. 113 422Google Scholar

    [37]

    Shulman H S, Damjanovic D, Setter N 2000 J. Am. Ceram. Soc. 83 528Google Scholar

    [38]

    Bai W, Chen G, Zhu J Y, Yang J, Lin T, Meng X J, Tang X D, Duan C G, Chu J H 2012 Appl. Phys. Lett. 100 082902Google Scholar

    [39]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kito H 2005 Nature 436 1136Google Scholar

    [40]

    Liu Y Y, Chen X M, Liu X Q, Li L 2007 Appl. Phys. Lett. 90 192905Google Scholar

    [41]

    Maglione M, Subramanian M A 2008 Appl. Phys. Lett. 93 032902Google Scholar

    [42]

    Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, Shinde A B 2013 Appl. Phys. Lett. 103 122901Google Scholar

    [43]

    Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta Materialia 57 5137Google Scholar

    [44]

    Suryanarayana S V, Srinivas A, Singh R S 1999 Proc. SPIE 3903 232Google Scholar

    [45]

    雷志威 2015 博士学位论文(合肥: 中国科学技术大学)

    Lei Z W 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • [1] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [2] 黄禹田, 王煜, 朱敏敏, 吕婷, 杨洪春, 李翔, 王秀章, 刘美风, 李少珍. (1-x)Sr3Sn2O7+xCa3Mn2O7陶瓷合成及其光电性能. 物理学报, 2018, 67(15): 154203. doi: 10.7498/aps.67.20180954
    [3] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [4] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性. 物理学报, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [5] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [6] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] 赵学童, 廖瑞金, 李建英, 王飞鹏. 直流老化对CaCu3Ti4O12陶瓷介电性能的影响. 物理学报, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [8] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵. Co含量对Bi6Fe2-xCoxTi3O18样品多铁性的影响. 物理学报, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [9] 王辉, 蔺家骏, 何锦强, 廖永力, 李盛涛. 沉淀剂对ZnO压敏陶瓷缺陷结构和电气性能的影响. 物理学报, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [10] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [11] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [12] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [13] 单丹, 朱珺钏, 金灿, 陈小兵. B位等价掺杂SrBi4Ti4O15铁电材料的性能研究. 物理学报, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [14] 韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成. 层状钙钛矿La1.3Sr1.7Mn2-xCuxO7的磁性及电特性. 物理学报, 2008, 57(1): 541-544. doi: 10.7498/aps.57.541
    [15] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [16] 曾 涛, 董显林, 毛朝梁, 梁瑞虹, 杨 洪. 孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究. 物理学报, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [17] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] 惠荣, 朱骏, 卢网平, 毛翔宇, 羌锋, 陈小兵. La掺杂诱发层状钙钛矿型铁电体弛豫性相变的介电研究. 物理学报, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [19] 刘鹏, 姚熹. La调节Pb(Zr,Sn,Ti)O_3反铁电陶瓷的相变与电学性质. 物理学报, 2002, 51(7): 1621-1627. doi: 10.7498/aps.51.1621
    [20] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
计量
  • 文章访问数:  6786
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 修回日期:  2018-11-30
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回