搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦离子显微镜对钨中氦行为的实验研究

马玉田 刘俊标 韩立 田利丰 王学聪 孟祥敏 肖善曲 王波

引用本文:
Citation:

氦离子显微镜对钨中氦行为的实验研究

马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波

Helium behavior of tungsten investigated by helium ion microscope

Ma Yu-Tian, Liu Jun-Biao, Han Li, Tian Li-Feng, Wang Xue-Cong, Meng Xiang-Min, Xiao Shan-Qu, Wang Bo
PDF
HTML
导出引用
  • 针对热核聚变面向等离子体钨材料中氦泡形成、演变以及机理研究的需求, 克服目前常用离子注入、电子扫描显微镜和透射电子显微镜等离线研究手段存在的不足, 提出氦离子显微镜对钨中氦的上述行为原位实时在线研究方法. 借助氦离子显微镜的离子注入、显微成像和聚焦离子束纳米加工功能, 它可以提供能量为0.5—35 keV、束流密度可达1025 ions/(m2·s)以上的氦离子束, 在该设备上进行钨中氦的注入实验. 同时在注入过程, 实时在线监测钨中氦泡形成、演变过程以及钨材料表面形貌的变化, 原位在线分析钨材料表面氦泡的大小、迁移合并以及其诱发的钨表面和近表面的微观损伤. 实验结果表明: 氦离子显微镜是研究钨中氦行为演变过程及其微观机理研究的新的研究手段和强有力的实验工具.
    Nuclear fusion energy is a clean and safe energy resource with huge potential. Tungsten is the primary candidate for plasma facing materials (PFMs) in future nuclear reactors because of its high melting point, high thermal conductivity and high resistance to sputtering and erosion. However, the interaction between tungsten and helium plasma generated by deuterium-tritium nuclear reactions will result in the degeneration of tungsten through helium blistering in tungsten. The solubility of helium in tungsten is low, and it tends to aggregate at grain boundary, phase boundary, vacancies and dislocations, thus forming helium bubbles. These bubbles will lead to microstructure changes of surface and bulk phases, as well as a decrease in mechanical properties, which seriously affects the service life of material. Limited by experimental techniques, some basic problems for the growth of helium bubbles in tungsten are not clear, for instance, how the helium clusters migrate, and nucleation mechanisms. The study of complex helium bubble formation, evolution and its underlying mechanism in tungsten PFM necessitates advanced experimental techniques. Traditional methods such as ion implantation, scanning electron microscope and transmission electron microscope are inadequate for this task. Therefore, we propose the helium ion microscope method to investigate the aforementioned several aspects of helium in tungsten in situ and real-time. Here, a helium irradiation experiment is performed by helium ion microscope (HIM), featuring nanostructure fabrication, ion implantation and microscopic imaging. The HIM can generate an ion beam with energy in a range of 0.5−35 keV and an flux upto 1025 ions/m2/s. In the process of helium ion implantation, we observe in situ and real time the helium blistering and the morphological evolution on tungsten surface, in order to capture the helium implantation-induced microscopic damage evolution on tungsten surface and subsurface. From the results of in situ HIM experiments, it is believed that a strong orientation dependence of blistering is observed with the blister occurring preferentially on the surface of grains with normal direction close to (111), and surface blistering of tungsten is directly related to cracks immediately below the surface. The present study demonstrates that the HIM is a powerful tool for investigating the helium blistering behavior in tungsten and provides valuable experimental data and reference for designing PFMs.
      通信作者: 马玉田, myt@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11775228, 51571003)资助的课题.
      Corresponding author: Ma Yu-Tian, myt@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775228, 51571003).
    [1]

    Bolt H, Barabash V, Federici G, Linke J, Loate A, Roth J, Sato K 2002 J. Nucl. Mater. 43 307

    [2]

    Lässer R, Baluc N, Boutard J L, Diegele E, Dudarev S, Möslang A, Pippan R, Riccardi B, Van der Schaaf B 2007 Fusion Eng. Des. 82 511Google Scholar

    [3]

    Wilson W D, Bisson C L, Baskes M L 1981 Phys. Rev. B. 24 5618

    [4]

    Shahram S, Akiyuki T, Koji N, Nasr G 2009 J. Nucl. Mater. 389 203Google Scholar

    [5]

    Alimov V K, Wang Y W, Liang T R, Yu Q Z, Jia X J 2017 Fusion Eng. Des. 125 479Google Scholar

    [6]

    Zhou H B, Li Y H, Lu G H 2016 Comp. Mater. Sci. 112 487Google Scholar

    [7]

    Chen Z, Han W J, Yu J G, Laszlo K, Zhu K G , Wei Q M 2016 J. Nucl. Mater. 479 418Google Scholar

    [8]

    Al-Ajlony A, Tripathi J K, Hassanein A 2017 J. Nucl. Mater. 488 1Google Scholar

    [9]

    Wang L, Hao T, Zhao B L, Zhang T, Fang Q F, Liu C S, Wang X P, Cao L 2018 J. Nucl. Mater. 508 107Google Scholar

    [10]

    Chen Z, Niu L L, Wang Z L, Tian L F, Laszlo K, Zhu K G, Wei Q M 2018 Acta Materialia 147 100Google Scholar

    [11]

    Nishijima D, Ye M.Y, Ohno N 2004 J. Nucl. Mater. 329—333 1029

    [12]

    Yang X, Hassanein A 2013 J. Nucl. Mater. 434 1Google Scholar

    [13]

    Ananth M, Scipioni L , Notte J 2008 Am. Lab. 40 42

    [14]

    Economou N P, Notte J A, Thompson W B 2011 Scanning 33 1Google Scholar

    [15]

    Hlawacek G, Veligura V, Van Gastel R, Poelsema B 2014 J. Vac. Sci. Technol. B 32 020801

    [16]

    Bergner F, Heintze C 2018 J. Nucl. Mater. 505 267Google Scholar

    [17]

    Hasenhuetl E, Zhang Z X, Kiyohiro Y, Peng S, Akihiko K 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 397 11Google Scholar

    [18]

    Valles G, Panizo-Laiz M, Gonz_alez C, Martin-Bragado I, Gonz_alez-Arrabal R, Gordillo N, Iglesias R, Guerrero C L, Perlado J M 2017 Fusion Eng. Des. 125 479Google Scholar

    [19]

    Fukumoto M, Kashiwagi H, Ohtsuka Y, Ueda Y, Nobuta Y, Yagyu J, Arai T, Taniguchi M, Inoue T, Sakamoto K 2009 J. Nucl. Mater. 386—388 768

    [20]

    Miyamoto M, Mikami S, Nagashima H, Iijima N, Nishijima D, Doerner R P, Yoshida N, Watanabe H , Ueda Y, Sagara A 2015 J. Nucl. Mater. 463 333Google Scholar

    [21]

    Liu F S, Rui H T, Peng S X, Zhu K G 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 333 120Google Scholar

    [22]

    Gilliam S B, Gidcumb S M, Forsythe D 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 241 491Google Scholar

    [23]

    Lindig S, Balden M, Kh Alimov V 2009 Phys. Scripta T 138 014040

    [24]

    Smirnov R D, Krasheninnikov S I, Guterl J 2015 J. Nucl. Mater. 463 359Google Scholar

  • 图 1  HIM整体结构及其工作原理图 (a)整体结构; (b)工作原理

    Fig. 1.  Schematic diagram and working principle diagram of HIM: (a) Schematic diagram; (b) working principle diagram.

    图 2  W样品的EBSD衍射花样和表面微观形貌 (a)EBSD衍射花样; (b)表面微观形貌; (c)注入区域

    Fig. 2.  EBSD map and surface micrograph of tungsten: (a) EBSD map of tungsten; (b) surface micrograph of tungsten; (c) the irradiated area of tungsten.

    图 3  He泡生长过程的原位在线监测 (a) 120 s; (b) 240 s; (c) 360 s; (d) 480 s; (e) 600 s; (f) 720 s; (g) 840 s; (h) 960 s; (i) 1080 s; (j) 1200 s; (k) 1320 s; (l) 1440 s; (m) 1560 s; (n) 1680 s; (o) 1800 s; (p) 1920 s; (q) 2040 s; (r) 2160 s

    Fig. 3.  In-situ observation of helium bubble growth during helium implantation: (a) 120 s; (b) 240 s; (c) 360 s; (d) 480 s; (e) 600 s; (f) 720 s; (g) 840 s; (h) 960 s; (i) 1080 s; (j) 1200 s; (k) 1320 s; (l) 1440 s; (m) 1560 s; (n) 1680 s; (o) 1800 s; (p) 1920 s; (q) 2040 s; (r) 2160 s.

    图 4  He泡生长过程的在线监测 (a) 1100 s; (b) 1120 s; (c) 1140 s; (d) 1160 s; (e) 1180 s; (f) 1200 s; (g) 1220 s; (h) 1240 s

    Fig. 4.  In-situ observation of helium bubble growth during helium implantation: (a) 1100 s; (b) 1120 s; (c) 1140 s; (d) 1160 s; (e) 1180 s; (f) 1200 s; (g) 1220 s; (h) 1240 s.

    图 5  He泡生长过程的在线监测 (a) 120 s; (b) 240 s; (c) 360 s; (d) 480 s; (e) 600 s; (f) 720 s; (g) 840 s; (h) 960 s

    Fig. 5.  In-situ observation of helium bubble growth during helium implantation: (a) 120 s; (b) 240 s; (c) 360 s; (d) 480 s; (e) 600 s; (f) 720 s; (g) 840 s; (h) 960 s.

    图 6  He泡和裂纹的大小测量 (a)He泡; (b)裂纹

    Fig. 6.  Measurement of the helium bubble and crack size: (a) Helium bubble; (b) crack.

    图 7  氦泡横截面微观形貌

    Fig. 7.  Cross-section of helium bubbles microstructure.

  • [1]

    Bolt H, Barabash V, Federici G, Linke J, Loate A, Roth J, Sato K 2002 J. Nucl. Mater. 43 307

    [2]

    Lässer R, Baluc N, Boutard J L, Diegele E, Dudarev S, Möslang A, Pippan R, Riccardi B, Van der Schaaf B 2007 Fusion Eng. Des. 82 511Google Scholar

    [3]

    Wilson W D, Bisson C L, Baskes M L 1981 Phys. Rev. B. 24 5618

    [4]

    Shahram S, Akiyuki T, Koji N, Nasr G 2009 J. Nucl. Mater. 389 203Google Scholar

    [5]

    Alimov V K, Wang Y W, Liang T R, Yu Q Z, Jia X J 2017 Fusion Eng. Des. 125 479Google Scholar

    [6]

    Zhou H B, Li Y H, Lu G H 2016 Comp. Mater. Sci. 112 487Google Scholar

    [7]

    Chen Z, Han W J, Yu J G, Laszlo K, Zhu K G , Wei Q M 2016 J. Nucl. Mater. 479 418Google Scholar

    [8]

    Al-Ajlony A, Tripathi J K, Hassanein A 2017 J. Nucl. Mater. 488 1Google Scholar

    [9]

    Wang L, Hao T, Zhao B L, Zhang T, Fang Q F, Liu C S, Wang X P, Cao L 2018 J. Nucl. Mater. 508 107Google Scholar

    [10]

    Chen Z, Niu L L, Wang Z L, Tian L F, Laszlo K, Zhu K G, Wei Q M 2018 Acta Materialia 147 100Google Scholar

    [11]

    Nishijima D, Ye M.Y, Ohno N 2004 J. Nucl. Mater. 329—333 1029

    [12]

    Yang X, Hassanein A 2013 J. Nucl. Mater. 434 1Google Scholar

    [13]

    Ananth M, Scipioni L , Notte J 2008 Am. Lab. 40 42

    [14]

    Economou N P, Notte J A, Thompson W B 2011 Scanning 33 1Google Scholar

    [15]

    Hlawacek G, Veligura V, Van Gastel R, Poelsema B 2014 J. Vac. Sci. Technol. B 32 020801

    [16]

    Bergner F, Heintze C 2018 J. Nucl. Mater. 505 267Google Scholar

    [17]

    Hasenhuetl E, Zhang Z X, Kiyohiro Y, Peng S, Akihiko K 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 397 11Google Scholar

    [18]

    Valles G, Panizo-Laiz M, Gonz_alez C, Martin-Bragado I, Gonz_alez-Arrabal R, Gordillo N, Iglesias R, Guerrero C L, Perlado J M 2017 Fusion Eng. Des. 125 479Google Scholar

    [19]

    Fukumoto M, Kashiwagi H, Ohtsuka Y, Ueda Y, Nobuta Y, Yagyu J, Arai T, Taniguchi M, Inoue T, Sakamoto K 2009 J. Nucl. Mater. 386—388 768

    [20]

    Miyamoto M, Mikami S, Nagashima H, Iijima N, Nishijima D, Doerner R P, Yoshida N, Watanabe H , Ueda Y, Sagara A 2015 J. Nucl. Mater. 463 333Google Scholar

    [21]

    Liu F S, Rui H T, Peng S X, Zhu K G 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 333 120Google Scholar

    [22]

    Gilliam S B, Gidcumb S M, Forsythe D 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 241 491Google Scholar

    [23]

    Lindig S, Balden M, Kh Alimov V 2009 Phys. Scripta T 138 014040

    [24]

    Smirnov R D, Krasheninnikov S I, Guterl J 2015 J. Nucl. Mater. 463 359Google Scholar

  • [1] 秦梦飞, 王英敏, 张红玉, 孙继忠. 〈100〉间隙型位错环在纯钨及含氦杂质钨(010)表面下运动行为的分子动力学模拟. 物理学报, 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [2] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究. 物理学报, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [3] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [4] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [5] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [7] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [8] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [9] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [10] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [11] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [12] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [13] 汪俊, 侯氢. 金属钛中氦团簇生长行为的分子动力学研究. 物理学报, 2009, 58(9): 6408-6412. doi: 10.7498/aps.58.6408
    [14] 张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀. 碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究. 物理学报, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [15] 刘 实, 郑 华, 赵 越, 熊良钺, 王隆保, 杨 勋. 氦在球磨贮氢合金中的存在行为研究. 物理学报, 2003, 52(3): 756-760. doi: 10.7498/aps.52.756
    [16] 陈冠英, 历树忠. 一种新的体视假彩色显微镜成像机理分析. 物理学报, 1999, 48(1): 23-30. doi: 10.7498/aps.48.23
    [17] 方晔, 魏莹, 钟发平, 白春礼, 唐有祺. 扫描隧道显微镜研究银胶的表面结构和凝聚行为. 物理学报, 1995, 44(4): 599-605. doi: 10.7498/aps.44.599
    [18] 杨翠英, 张道范, 吴星, 周玉清, 冯国光. 光折变BaTiO3晶体缺陷的分析电子显微镜研究. 物理学报, 1989, 38(12): 2003-2007. doi: 10.7498/aps.38.2003
    [19] 程万荣, 吴自勤. 铜合金薄膜高温行为的电子显微镜观察. 物理学报, 1982, 31(10): 1387-1394. doi: 10.7498/aps.31.1387
    [20] 廖乾初, 王云, 王洪君, 蓝芬兰. 在扫描电子显微镜中所观察到钨的奇异花样. 物理学报, 1980, 29(1): 131-137. doi: 10.7498/aps.29.131
计量
  • 文章访问数:  6297
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2018-12-12
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回