搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体中X射线透过率分析及潜在通信应用研究

李瑶 苏桐 雷凡 徐能 盛立志 赵宝升

引用本文:
Citation:

等离子体中X射线透过率分析及潜在通信应用研究

李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升

X-ray transmission characteristics and potential communication application in plasma region

Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng
PDF
HTML
导出引用
  • X射线具有波长短、光子能量高等特点, 有望在等离子体环境中实现信息的有效传输. 本文首先采用基于连续介质中的WKB分层法, 研究了黑障条件下, X射线在非均匀等离子体鞘套中的透过率特性, 仿真了不同等离子体电子密度和碰撞频率下X射线信号的透过率, 理论上证明了X射线可用于黑障区信息传输的可行性. 其次通过搭建环形扩散辉光放电等离子体发生器及实验验证系统, 进行了国内外首次X射线穿过等离子体鞘套的验证实验. 实验结果表明, 等离子体对X射线信号的透过率存在一定程度的衰减, 透过等离子体前后的X射线信号能谱轮廓相似度优于95.5%, 能谱峰值点的偏移量小于1.3%. 此外, 在原有理论模型的基础上, 考虑等离子中的粒子与X射线的碰撞、吸收效应, 优化了X射线在等离子体中的透过率模型, 与传统的理论方法相比, 该模型可对实验现象进行更好的解释. 同时计算了X射线在临近空间的透过率, 并分析了X射线通信所能达到的潜在指标. 这些结果有望为解决黑障区信号传输提供一定的理论与实验依据.
    When a supersonic spacecraft enters into the atmosphere of earth, part of the spacecraft's kinetic energy changes into thermal energy, thus causing the air surrounding the craft to be heated and compressed. As a result, the temperature near the surface may reach several thousands of kelvins, which leads the surface materials to be ionized and form a plasma sheath around the vehicle. This plasma layer has an electron density ranging from 1015m-3 to 1020m-3, and may interrupt the radio communication signal between the re-entry vehicle and ground-based stations, which is known as ‘communication blackout’. According to the radio attenuation measurement (RAM) experiments carried out by NASA(National Aeronautics and Space Administration) in the 1970s, the duration time of communication blackout ranges from 4 to 10 minutes in an altitude range from 40 km to 100 km. Communication blackout has puzzled aerospace industry for several decades, and has not yet been completely resolved. Due to this, it becomes necessary to understand the causes of communication blackout and the methods for its mitigation. Compared with other communication methods, x-ray communication(XCOM) has the advantages of short carrier wavelength and high photon energy, as well as strong ability to resist anti-interference, thus being able to open a novel way to solve this long-lasting unresolved problem. In this paper, to begin with, we analyze the transmission coefficiencies under different plasma electron densities and collision frequencies based on Wentzel Kramers Brillouin (WKB) approximation method. The simulation results indicate that the x-ray carrier is not influenced by the reentry plasma sheath. After that, a plasma source based on glow discharge is used to verify the mathematical model. The non-magnetized unobstructed plasma region is $\varPhi $200 mm × 180 mm, which can be used for simulating plasma sheath near the reenter spacecraft. Then the transmission coefficiency, energy spectrum similarity and energy spectrum peak offset under different x-ray energy, x-ray flow and plasma electron density are firstly analyzed. Experimental results indicate that plasma can lead the x-ray signal to be attenuated to a certain extent, the increase of plasma electron density will cause higher attenuation. However, with a higher signal x-ray energy and x-ray flow, the XCOM could achieve less attenuation in the re-enter plasma layer. When the plasma electron density ranges from 6 × 1016/m3 to 1.2 × 1017/m3, 1.34 Mcps signal x-ray photons’ flow with 20 kV anode voltage would achieve more than a 95% transmission efficiency. Also, the spectrum of x-ray signal can obtain more than 95.5% similarity and the peak offset is less than 1.3% after passing the plasma sheath. Subsequently, based on the original mathematic model and experimental results, considering the free-free absorption, free-bound absorption, bound-bound absorption and scattering effect of x-ray photons in plasma, the x-ray transmission characteristics are optimized to make simulation results well consistent with the experiment results. Finally, an MCNP (Monte Carlo N Particle) transport simulation is used to analyze the feasibility of XCOM in blackout region, which indicates that the energy range 15—25 keV is the suitable to achieve the XCOM in adjacent space, and the relation of potential transmitting speed with bit error is calculated. Theoretically, the XCOM can achieve about 1.3 Mbps communication speed in blackout region. In summary, these theoretical and experimental results indicate that the XCOM is a potential and novel method to solve the blackout communication problems.
      通信作者: 苏桐, sutong@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61471357)资助的课题.
      Corresponding author: Su Tong, sutong@opt.ac.cn
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant No. 61471357).
    [1]

    Liu Z, Bao W, Li X, et al. 2015 IEEE Trans. Plasma Sci. 43 3147Google Scholar

    [2]

    王家胜, 杨显强 2014 航天器工程 23 1Google Scholar

    Wang J S, Yang X Q 2014 Spacecraft Engineering 23 1Google Scholar

    [3]

    Zhou H, Li X P, Xie K 2017 AIP Adv. 10 105314

    [4]

    Zhang Y, Liu Y 2017 IEEE Trans. Antennas Propag. 65 940948

    [5]

    Li J, Yang S, Guo L, et al. 2017 Opt. Commun. 396 1Google Scholar

    [6]

    Li H, Tang X, Hang S, et al. 2017 J. Appl. Phys. 12 123101

    [7]

    Kim M, Keidar M 2010 J. Spacecraft Rockets 47 1Google Scholar

    [8]

    杨敏, 李小平, 刘彦明等 2014 物理学报 63 085201Google Scholar

    Yang M, Li X P, Liu Y M, et al. 2014 Acta Phys. Sin. 63 085201Google Scholar

    [9]

    Jones W L, Cross A E 1972 Electron Static Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second. (Hampton: Langley Research Center) NASA-TN-D-6617

    [10]

    Beiser A, Raab B 1961 Hydromagnetic and Plasma Scaling Law 4 2

    [11]

    Gregoire D J, Santoru J 1992 Hydrol. Res. Lett. 5 7

    [12]

    朱冰 2006 博士学位论文 (西安: 西北工业大学)

    Zhu B 2006 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [13]

    李伟 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li W 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [14]

    袁承勋 2010 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Yuan C X 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [15]

    Zheng L, Zhao Q, Liu S, et al. 2012 Progress in Electromagnetics Research 24 179Google Scholar

    [16]

    刘智惟, 包为民, 李小平 2014 物理学报 23 235201Google Scholar

    Liu Z W, Bao W M, Li X P 2014 Acta Phys. Sin. 23 235201Google Scholar

    [17]

    Dan L, Guo L X, Li J T 2018 Phys. Plasmas 25 013707Google Scholar

    [18]

    Dr. Keith Gendreau talk about NICEER and Modulate X-ray Source[EB/OL]. http://www.techbriefs.com/component/content/article/24-ntb/features[2018-11-05]

    [19]

    宋诗斌 2016 博士学位论文(西安: 西安电子科技大学).

    Song S B 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    牟欢, 李保权, 曹阳 2016 物理学报 65 140703Google Scholar

    Mu H, Li B Q, Cao Y 2016 Acta Phys. Sin. 65 140703Google Scholar

    [21]

    姜明 2004 博士学位论文(成都: 四川大学)

    Jiang M 2004 Ph. D. Dissertation (Chengdu:Sichuan University) (in Chinese)

    [22]

    曾交龙 2001 博士学位论文(长沙: 国防科技大学)

    Zeng J L 2001 Ph. D. Dissertation (Changsha: National University of Defense Technology ) (in Chinese)

    [23]

    谢楷 2014 博士学位论文(西安: 西安电子科技大学)

    Xie K 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [24]

    刘舵, 强鹏飞, 李林森 等 2016 物理学报 65 010703Google Scholar

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Phys. Sin. 65 010703Google Scholar

    [25]

    刘舵, 强鹏飞, 李林森等 2016 光学学报 36 0834002

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Opt. Sin. 36 0834002

    [26]

    苏桐, 李瑶, 盛立志等 2017 光子学报 46 212219

    Su T, Li Y, Sheng L Z, et al. 2017 Acta Photon. Sin. 46 212219

    [27]

    徐能, 盛立志, 张大鹏 等 2017 物理学报 66 334340

    Xu N, Sheng L Z, Zhang D P, et al. 2017 Acta Phys. Sin. 66 334340

    [28]

    Song S B, Xu L P, Zhang H, et al. 2015 Sensor 15 325342

  • 图 1  WKB分层法传播示意图

    Fig. 1.  Schematic of WKB stratification method.

    图 2  X射线与微波透过率特性 (a) 不同等离子体电子密度; (b) 不同碰撞频率

    Fig. 2.  The X-ray and microwave transmission characteristics: (a) Different plasma electron density; (b) different plasma collision frequency.

    图 3  实验原理与现场图 (a)实验原理图; (b)实验现场图

    Fig. 3.  Schematic and experimental condition of X-ray transmission in plasma region: (a) Schematic diagram; (b) annotated photos of experiment condition.

    图 4  不同高压与灯丝电流时的透过率 (a) 不同光子能量; (b) 不同光子流量

    Fig. 4.  Transmission co-efficiency under various anode voltage and filament current: (a) Different X-ray energy; (b) different X-ray flow.

    图 5  不同高压与灯丝电流时的能谱特性 (a)不同X射线能量时; (b)不同X射线流量时

    Fig. 5.  Spectrum characteristics under various X-ray energy and X-ray flow: (a) Different X-ray energy; (b) different X-ray flow.

    图 6  黑障区X射线通信信号传输原理图

    Fig. 6.  The schematic diagram of X-ray communication signal transmission process in blackout region.

    图 7  临近空间X射线的透过率

    Fig. 7.  Transmission rate of X-ray on condition of near space.

    图 8  不同光子能量与调制模式下的X射线通信指标

    Fig. 8.  Communication speed and BER versus different energy and modulation.

    表 1  各种等离子体发生装置及其比较

    Table 1.  Various plasma generating devices and their comparison.

    等离子体产生方法最高电子密度持续时间可控性成本
    辉光放电1017/m3连续
    激波管> 1020/m3亚毫秒级一般
    发动机喷流> 1020/m3几百毫秒一般
    载飞真实鞘套4—10 min无法控制极高
    下载: 导出CSV

    表 2  不同射频电源功率下的等离子体参数

    Table 2.  Different electron density and collision frequency under various RF power.

    射频电源功率/W等离子体电子密度/m3碰撞频率/MHz
    3006.2 × 1016428
    5009.1 × 1016491
    7001.05 × 1017494
    10001.23 × 1017523
    下载: 导出CSV

    表 3  不同条件下理论与实验结果对比

    Table 3.  Experimental and theoretical results under various condition.

    实验条件WKB法实验结果理论值
    电子密度/m-3: 6.2 × 1016阳极高压/kV: 15流量5.41 kcps99.98%67.84%70.12%
    流量 1.3 Mcps93.74%95.22%
    电子密度/m-3: 1.05 × 1017阳极高压/kV: 20流量7.52 kcps99.91%57.41%54.65%
    流量 0.82 Mcps82.88%84.07%
    电子密度/m-3: 1.23 × 1017阳极高压/kV: 25流量21.86 kcps99.88%59.78%61.32%
    流量 2.8 Mcps94.04%96.81%
    下载: 导出CSV
  • [1]

    Liu Z, Bao W, Li X, et al. 2015 IEEE Trans. Plasma Sci. 43 3147Google Scholar

    [2]

    王家胜, 杨显强 2014 航天器工程 23 1Google Scholar

    Wang J S, Yang X Q 2014 Spacecraft Engineering 23 1Google Scholar

    [3]

    Zhou H, Li X P, Xie K 2017 AIP Adv. 10 105314

    [4]

    Zhang Y, Liu Y 2017 IEEE Trans. Antennas Propag. 65 940948

    [5]

    Li J, Yang S, Guo L, et al. 2017 Opt. Commun. 396 1Google Scholar

    [6]

    Li H, Tang X, Hang S, et al. 2017 J. Appl. Phys. 12 123101

    [7]

    Kim M, Keidar M 2010 J. Spacecraft Rockets 47 1Google Scholar

    [8]

    杨敏, 李小平, 刘彦明等 2014 物理学报 63 085201Google Scholar

    Yang M, Li X P, Liu Y M, et al. 2014 Acta Phys. Sin. 63 085201Google Scholar

    [9]

    Jones W L, Cross A E 1972 Electron Static Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second. (Hampton: Langley Research Center) NASA-TN-D-6617

    [10]

    Beiser A, Raab B 1961 Hydromagnetic and Plasma Scaling Law 4 2

    [11]

    Gregoire D J, Santoru J 1992 Hydrol. Res. Lett. 5 7

    [12]

    朱冰 2006 博士学位论文 (西安: 西北工业大学)

    Zhu B 2006 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [13]

    李伟 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li W 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [14]

    袁承勋 2010 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Yuan C X 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [15]

    Zheng L, Zhao Q, Liu S, et al. 2012 Progress in Electromagnetics Research 24 179Google Scholar

    [16]

    刘智惟, 包为民, 李小平 2014 物理学报 23 235201Google Scholar

    Liu Z W, Bao W M, Li X P 2014 Acta Phys. Sin. 23 235201Google Scholar

    [17]

    Dan L, Guo L X, Li J T 2018 Phys. Plasmas 25 013707Google Scholar

    [18]

    Dr. Keith Gendreau talk about NICEER and Modulate X-ray Source[EB/OL]. http://www.techbriefs.com/component/content/article/24-ntb/features[2018-11-05]

    [19]

    宋诗斌 2016 博士学位论文(西安: 西安电子科技大学).

    Song S B 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    牟欢, 李保权, 曹阳 2016 物理学报 65 140703Google Scholar

    Mu H, Li B Q, Cao Y 2016 Acta Phys. Sin. 65 140703Google Scholar

    [21]

    姜明 2004 博士学位论文(成都: 四川大学)

    Jiang M 2004 Ph. D. Dissertation (Chengdu:Sichuan University) (in Chinese)

    [22]

    曾交龙 2001 博士学位论文(长沙: 国防科技大学)

    Zeng J L 2001 Ph. D. Dissertation (Changsha: National University of Defense Technology ) (in Chinese)

    [23]

    谢楷 2014 博士学位论文(西安: 西安电子科技大学)

    Xie K 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [24]

    刘舵, 强鹏飞, 李林森 等 2016 物理学报 65 010703Google Scholar

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Phys. Sin. 65 010703Google Scholar

    [25]

    刘舵, 强鹏飞, 李林森等 2016 光学学报 36 0834002

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Opt. Sin. 36 0834002

    [26]

    苏桐, 李瑶, 盛立志等 2017 光子学报 46 212219

    Su T, Li Y, Sheng L Z, et al. 2017 Acta Photon. Sin. 46 212219

    [27]

    徐能, 盛立志, 张大鹏 等 2017 物理学报 66 334340

    Xu N, Sheng L Z, Zhang D P, et al. 2017 Acta Phys. Sin. 66 334340

    [28]

    Song S B, Xu L P, Zhang H, et al. 2015 Sensor 15 325342

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L壳层 X射线. 物理学报, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [5] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L X射线研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [6] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青. 近Bohr速度I20+离子在不同靶面上的L壳层X射线辐射. 物理学报, 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [7] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [8] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [9] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [10] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [11] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [12] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [13] 邹贤容, 邵剑雄, 陈熙萌, 崔莹. 高电荷态Ar17+离子在表面以下过程中发射X射线分支比及各分支能量的研究. 物理学报, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [14] 张泊丽, 杨治虎, 杜树斌, 常宏伟, 薛迎丽, 宋张勇, 朱可欣, 田野. 20—50MeV O5+离子引起Au的L壳层X射线产生截面研究. 物理学报, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [15] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [16] 杨治虎, 宋张勇, 崔 莹, 张红强, 阮芳芳, 邵剑雄, 杜 娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红. Ar16+和Ar17+离子与Zr作用产生的X射线谱. 物理学报, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [17] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [18] 谈 斌, 李智勇, 李世忱. 非线性光纤环形镜的脉冲透过特性研究. 物理学报, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
    [19] 陈红艺, 郭红莲, 倪培根, 张 琦, 程丙英, 张道中. 聚苯乙烯微粒光子晶体的反常透过特性. 物理学报, 2003, 52(9): 2155-2158. doi: 10.7498/aps.52.2155
    [20] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
计量
  • 文章访问数:  7223
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2018-11-25
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回