搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场作用下MoS2的分子结构和电子光谱

杜建宾 冯志芳 张倩 韩丽君 唐延林 李奇峰

引用本文:
Citation:

外电场作用下MoS2的分子结构和电子光谱

杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰

Molecular structure and electronic spectrum of MoS2under external electric field

Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng
PDF
HTML
导出引用
  • 各种新型材料改善了人类的生产和生活, 二维纳米材料更以其独特的物理化学性质成为了研究的热点. 二硫化钼(MoS2)作为过渡金属硫化物的代表, 具有优异的机械性能和化学稳定性, 为研究其外场效应, 本文采用密度泛函理论方法优化了MoS2分子在0—0.1 a.u.(0—5.1423 × 1010 V/m)的静电场中基态几何结构, 得到了分子密立根电荷分布、偶极矩和总能量; 在此基础上, 采用含时密度泛函方法研究了MoS2分子紫外-可见(UV-Vis)吸收光谱在此静电场中的变化. 结果显示: 分子内电荷分布随着外电场的增强发生了整体转移; 伴随着电荷的整体转移, 电偶极矩随之增大, 而分子总能量随之减小; 分子最强UV-Vis吸收峰的波长为483 nm、摩尔吸收系数为461 L·mol–1·cm–1; 伴随着外电场的的逐渐增强, 分子激发态的摩尔吸收系数明显增大, UV-Vis光谱吸收峰显著红移, 外电场为0.08 a.u.时, 其吸收峰基本覆盖了整个可见光波长范围.
    A variety of new materials have improved the production and life of human beings. Two-dimensional nano materials have become a research hotspot due to their unique physical and chemical properties. Molybdenum disulfide (MoS2) is representative of transition metal sulfide, with excellent mechanical properties and chemical stability. In order to study the influence of external electrical field on the molecular structure and spectrum, here in this work, the density functional theory with the hybrid B3LYP at Def2-TZVP level is employed to calculate the geometrical parameters of the ground state of MoS2 molecule under external electric fields ranging from 0 to 0.1 a.u. (0−5.1423 × 1010 V/m). Based on the optimized structures, the time-dependent density functional theory at the same level as the above is adopted to calculate the absorption wavelengths and the molar absorption coefficients for the first ten excited states of MoS2 molecule under external electric fields. The results show that the most strongest absorption band is located at 483 nm with a molar absorption coefficient of 461 L·mol–1·cm–1 in the UV-Vis absorption spectrum. The intramolecular charge transfers as a whole with the enhancement of the external electric field. The electric dipole moment increases with the external electric field rising, while the total molecular energy decreases with external electric field increasing. With the enhancement of the external electric field, the absorption peaks show a significant redshift. When the electric field increases to 0.1 a.u., the redshift is obvious. This can be explained as follows. When the external electric field is weaker, the electron transfer in the molecule is not significant. However, with the augment of the external electric field, the electron transfer in the molecule occurs as a whole. This makes the electron interaction between Mo and S weaker, thus the electron transition is more likely to occur. The energy required for excitation is reduced, and the wavelength of the excited state becomes longer, that is, the absorption peak takes a redshift. With the enhancement of the external electric field, the molar absorption coefficient increases obviously. This is because the overall transfer of the external electric field to the electron makes the electron cloud density of the MoS2 molecule increase and the number of electrons in transition augment. This work provides a theoretical basis for the utilization and improvement of MoS2 photoelectric properties, and also enlightens the application research of other photoelectric materials.
      通信作者: 李奇峰, qfli@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2014YQ060773、2017YFC0803600)资助的课题.
      Corresponding author: Li Qi-Feng, qfli@tju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2014YQ060773, 2017YFC0803600).
    [1]

    Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S 2007 J. Appl. Phys. 101 014507Google Scholar

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [3]

    陈敏强 2017 硕士学位论文 (太原: 太原理工大学)

    Chen M Q 2017 M. S. Thesis (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [4]

    Dominko R, Arcon D, Mrzel A, Zorko A, Cevc P, Venturini P, Gaberscek M, Remskar M, Mihailovic D 2002 Adv. Mater. 14 1531Google Scholar

    [5]

    孙华婷 2018 硕士学位论文 (合肥: 安徽大学)

    Sun H T 2018 M. S. Thesis (Hefei: Anhui University) (in Chinese)

    [6]

    Mohammad H, Amir B F, Narayana R A 2015 Nat. Comms. 6 8616Google Scholar

    [7]

    Li W F, Yang Y M, Weber J K, Zhang G, Zhou R H 2016 ACS Nano 10 1829Google Scholar

    [8]

    Jafar A, Alireza K 2017 Comput. Mater. Sci. 137 201Google Scholar

    [9]

    Mateus H K, Jose R B, Marcia C B 2018 J. Chem. Phys. 148 222804Google Scholar

    [10]

    Wang P, Li W, Du C C, Zheng X, Sun X L, Yan Y G, Zhang J 2017 Comput. Mater. Sci. 140 284Google Scholar

    [11]

    Zhang Y D, Meng Z S, Shi Q, Gao H Q, Liu Y Z, Wang Y H, Rao D W, Deng K M, Lu R F 2017 J. Phys.: Condens. Matter 29 375201Google Scholar

    [12]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170Google Scholar

    [13]

    王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102Google Scholar

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102Google Scholar

    [14]

    Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002Google Scholar

    [15]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111Google Scholar

    [16]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223Google Scholar

    [17]

    Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329Google Scholar

    [18]

    杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起 2018 物理学报 67 223101Google Scholar

    Du J B, Feng Z F, Han L J, Tang Y L, Wu D Q 2018 Acta Phys. Sin. 67 223101Google Scholar

    [19]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [20]

    谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989

    [21]

    Liu Q H, Li L Z, Li Y F, Gao Z X, Chen Z F, Lu J 2012 J. Phys. Chem. C 116 21556Google Scholar

    [22]

    Gemming S, Seifert G, Götz M, Fischer T, Ganteför G 2010 Phys. Status Solidi B 247 1069Google Scholar

    [23]

    Peverati R, Truhlar D G 2012 Phys. Chem. Chem. Phys. 14 13171Google Scholar

    [24]

    Liang B Y, Andrews L 2002 J. Phys. Chem. A 106 6945Google Scholar

    [25]

    Mayhall N J, Becher E L, Chowdhury A, Raghavachari K 2011 J. Phys. Chem. A 115 2291Google Scholar

    [26]

    Wang B, Wu N, Zhang X B, Huang X, Zhang Y F, Chen W K, Ding K N 2013 J. Phys. Chem. A 117 5632Google Scholar

    [27]

    Wang Y Y, Deng J J, Wang X, Che J T, Ding X L 2018 Phys. Chem. Chem. Phys. 20 6365Google Scholar

    [28]

    Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101Google Scholar

    [29]

    Grozema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014Google Scholar

    [30]

    朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169Google Scholar

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169Google Scholar

    [31]

    Gemming S, Tamuliene J, Seifert G, Bertram N, Kim Y D, Ganteför G, 2006 Appl. Phys. A: Mater. Sci. Process. 82 161Google Scholar

    [32]

    Murugan P, Kumar V, Kawazoe Y, Ota N 2005 Phys. Rev. A: At. Mol. Opt. Phys. 71 063203Google Scholar

    [33]

    Jelena P, Jasna V, Tijana T I, Marko S, Radoš G 2018 Opt. Quant. Electron. 50 291Google Scholar

  • 图 1  MoS2的分子结构

    Fig. 1.  Structure of the MoS2 molecule.

    图 2  MoS2分子占据轨道侧视图

    Fig. 2.  The side view of MoS2 occupied molecular orbital.

    图 3  分子电偶极矩u随外电场的变化

    Fig. 3.  The relation of dipole moment and electric field intensity of MoS2.

    图 4  外电场下分子总能量E的变化

    Fig. 4.  The relationship between total energy of MoS2 molecule and electric field intensity.

    图 5  不同外电场下的MoS2分子UV-Vis吸收光谱(Epsilon: 摩尔吸收系数)

    Fig. 5.  UV-Vis absorption spectra of MoS2 molecule under different external electric fields (Epsilon: molar absorption coefficient).

    图 6  不同外电场下MoS2激发态的分子轨道(占据轨道, 填充了电子的分子轨道; 跃迁轨道, 分子被激发时, 电子从占据轨道跃迁到的空轨道; 轨道权重, 分子某一激发态, 构成轨道的各个组成部分的贡献, 图中给出的是所占比例最大的部分)

    Fig. 6.  Excited state orbital diagram of MoS2 molecule under different external electric fields (occupied orbitals, molecular orbitals filled with electrons; a transition orbital is a vacant orbital that an electron jumps from an occupied orbital to when a molecule is excited; orbital weight, the contribution of each component of an excited state of a molecule to the composition of the orbital, shown in the figure is the one with the largest proportion).

    表 1  不同电场下原子Mo和S的电荷Q/a.u.

    Table 1.  The charges of Mo and S (unit: a.u.) of the MoS2 molecule under different external electric fields.

    F00.020.040.060.080.10
    1Mo0.7820.7520.6590.4880.237–0.069
    2S–0.391–0.376–0.329–0.244–0.1190.034
    3S–0.391–0.376–0.329–0.244–0.1190.034
    下载: 导出CSV
  • [1]

    Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S 2007 J. Appl. Phys. 101 014507Google Scholar

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [3]

    陈敏强 2017 硕士学位论文 (太原: 太原理工大学)

    Chen M Q 2017 M. S. Thesis (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [4]

    Dominko R, Arcon D, Mrzel A, Zorko A, Cevc P, Venturini P, Gaberscek M, Remskar M, Mihailovic D 2002 Adv. Mater. 14 1531Google Scholar

    [5]

    孙华婷 2018 硕士学位论文 (合肥: 安徽大学)

    Sun H T 2018 M. S. Thesis (Hefei: Anhui University) (in Chinese)

    [6]

    Mohammad H, Amir B F, Narayana R A 2015 Nat. Comms. 6 8616Google Scholar

    [7]

    Li W F, Yang Y M, Weber J K, Zhang G, Zhou R H 2016 ACS Nano 10 1829Google Scholar

    [8]

    Jafar A, Alireza K 2017 Comput. Mater. Sci. 137 201Google Scholar

    [9]

    Mateus H K, Jose R B, Marcia C B 2018 J. Chem. Phys. 148 222804Google Scholar

    [10]

    Wang P, Li W, Du C C, Zheng X, Sun X L, Yan Y G, Zhang J 2017 Comput. Mater. Sci. 140 284Google Scholar

    [11]

    Zhang Y D, Meng Z S, Shi Q, Gao H Q, Liu Y Z, Wang Y H, Rao D W, Deng K M, Lu R F 2017 J. Phys.: Condens. Matter 29 375201Google Scholar

    [12]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170Google Scholar

    [13]

    王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102Google Scholar

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102Google Scholar

    [14]

    Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002Google Scholar

    [15]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111Google Scholar

    [16]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223Google Scholar

    [17]

    Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329Google Scholar

    [18]

    杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起 2018 物理学报 67 223101Google Scholar

    Du J B, Feng Z F, Han L J, Tang Y L, Wu D Q 2018 Acta Phys. Sin. 67 223101Google Scholar

    [19]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [20]

    谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989

    [21]

    Liu Q H, Li L Z, Li Y F, Gao Z X, Chen Z F, Lu J 2012 J. Phys. Chem. C 116 21556Google Scholar

    [22]

    Gemming S, Seifert G, Götz M, Fischer T, Ganteför G 2010 Phys. Status Solidi B 247 1069Google Scholar

    [23]

    Peverati R, Truhlar D G 2012 Phys. Chem. Chem. Phys. 14 13171Google Scholar

    [24]

    Liang B Y, Andrews L 2002 J. Phys. Chem. A 106 6945Google Scholar

    [25]

    Mayhall N J, Becher E L, Chowdhury A, Raghavachari K 2011 J. Phys. Chem. A 115 2291Google Scholar

    [26]

    Wang B, Wu N, Zhang X B, Huang X, Zhang Y F, Chen W K, Ding K N 2013 J. Phys. Chem. A 117 5632Google Scholar

    [27]

    Wang Y Y, Deng J J, Wang X, Che J T, Ding X L 2018 Phys. Chem. Chem. Phys. 20 6365Google Scholar

    [28]

    Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101Google Scholar

    [29]

    Grozema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014Google Scholar

    [30]

    朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169Google Scholar

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169Google Scholar

    [31]

    Gemming S, Tamuliene J, Seifert G, Bertram N, Kim Y D, Ganteför G, 2006 Appl. Phys. A: Mater. Sci. Process. 82 161Google Scholar

    [32]

    Murugan P, Kumar V, Kawazoe Y, Ota N 2005 Phys. Rev. A: At. Mol. Opt. Phys. 71 063203Google Scholar

    [33]

    Jelena P, Jasna V, Tijana T I, Marko S, Radoš G 2018 Opt. Quant. Electron. 50 291Google Scholar

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [3] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [5] 杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起. 外场作用下C12H4Cl4O2的分子结构和电子光谱研究. 物理学报, 2018, 67(22): 223101. doi: 10.7498/aps.67.20181454
    [6] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [7] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [8] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [9] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [10] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [11] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [13] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [14] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [15] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [16] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [17] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [18] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱. 物理学报, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [19] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱. 物理学报, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [20] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
计量
  • 文章访问数:  9893
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-21
  • 修回日期:  2019-07-18
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回