搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析

刘康 孙华锐

引用本文:
Citation:

基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析

刘康, 孙华锐

Raman thermometry based thermal resistance analysis of GaN high electron mobility transistors with copper-based composite flanges

Liu Kang, Sun Hua-Rui
PDF
HTML
导出引用
  • 采用拉曼热测量技术结合有限元热仿真模型, 分析比较新型铜/石墨复合物法兰封装与传统铜钼法兰封装的GaN器件的结温与热阻, 发现前者的整体热阻比铜钼法兰器件的整体热阻低18.7%, 器件内部各层材料的温度分布显示铜/石墨复合物法兰在器件中的热阻占比相比铜钼法兰在器件中的热阻占比低13%, 这证明使用高热导率铜/石墨复合物法兰封装提高GaN器件热扩散性能的有效性. 通过对两种GaN器件热阻占比的测量与分析, 发现除了封装法兰以外, 热阻占比最高的是GaN外延与衬底材料之间的界面热阻, 降低界面热阻是进一步提高器件热性能的关键. 同时, 详细阐述了使用拉曼光热技术测量GaN器件结温和热阻的原理和过程, 展示了拉曼光热技术作为一种GaN器件热特性表征方法的有效性.
    The electrical performance and the long-term reliability of GaN-based high electron mobility transistors (HEMTs) are greatly affected by the Joule self-heating effect under high power density operation condition. Measurement of the junction temperature and analysis of the thermal resistance of the constituent layers including the packaging material are critically important for thermal design and reliability assessment of GaN-based HEMTs. In this paper, Raman thermometry combined with the finite element thermal simulation is used to compare the junction temperature and the thermal resistance of a GaN HEMT mounted on a novel Cu/graphite composite flange with those of a conventional CuMo flanged device. The results show that the junction temperature of the Cu/graphite flanged device is 15% lower than that of the CuMo flanged device at a power dissipation of 1.43 W/mm, while the overall device thermal resistance is 18.7% lower in the Cu/graphite flanged device. In addition, the temperature distributions of each layer along the cross-plane direction are analyzed for the two devices; the thermal resistance ratio of the Cu/graphite flange is 40% of the overall device thermal resistance, while the CuMo flange account for 53% of the overall thermal resistance of the device. This proves the effectiveness and benefit of using the Cu/graphite composite material package of high thermal conductivity to improve the heat dissipation of GaN HEMTs. By tuning the mass fraction of the graphite, it is possible to further increase the thermal conductivity of the Cu/graphite composite flange and to further reduce the device thermal resistance. It is observed in the Raman thermal measurement that the highest thermal resistance after flanging is the interfacial thermal resistance between the GaN epitaxial layer and the SiC substrate (~50 m2·K/GW). For obtaining the better thermal characteristics of the GaN HEMT, it is crucial to reduce the GaN/SiC interfacial thermal resistance through interface engineering during the epitaxial growth. In the meantime, Raman thermometry combined with the finite element thermal simulation is demonstrated to be an effective method for implementing the thermal characterization of the GaN-based devices and the constituent material layers, and the principle and procedure of the method are described in detail in the paper.
      通信作者: 孙华锐, huarui.sun@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61604049)、深圳市海外高层次人才技术创新项目(批准号: KQJSCX20170726104440871)和深圳市引进人才启动经费资助的课题
      Corresponding author: Sun Hua-Rui, huarui.sun@hit.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61604049), the Shenzhen Overseas High-Caliber Personnel Technology Innovation Project, China (Grant No. KQJSCX20170726104440871), and the Startup Funding of Shenzhen, China
    [1]

    Huang H, Sun Z, Cao Y, Li F, Zhang F, Wen Z, Hu L 2018 J. Phys. D: Appl. Phys. 51 345102Google Scholar

    [2]

    Huang H, Li F, Sun Z, Cao Y 2018 Micromachines 9 658Google Scholar

    [3]

    Bagnall K R, Saadat O I, Joglekar S, Palacios T, Wang E N 2017 IEEE Trans. Electron Devices. 64 2121Google Scholar

    [4]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron Devices. 64 779Google Scholar

    [5]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [6]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [7]

    Wu Y F, Moore M, Saxler A, Wisleder T, Parikh P 2006 64th Device Research Conference IEEE State College, PA, USA, June 26–28, 2006 p151

    [8]

    Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416Google Scholar

    [9]

    Sun H R, Pomeroy J W, Simon R B, Francis D, Faili F, Twitchen D J, Kuball M 2016 IEEE Electron Device Lett. 37 621Google Scholar

    [10]

    Won Y, Cho J, Agonafer D, Asheghi M, Goodson K E 2015 IEEE Trans. Compon., Packag., Manuf. Technol. 5 737Google Scholar

    [11]

    Sun H R, Simon R B, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [12]

    Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [13]

    Ma Z H, Cao H C, Lin S, Li X D, Zhao L X 2019 Solid-State Electron. 156 92Google Scholar

    [14]

    Manoi A, Pomeroy J W, Killat N, Kuball M 2010 IEEE Electron Device Lett. 31 1395Google Scholar

    [15]

    张昊明, 何新波, 沈晓宇, 刘谦, 曲选辉 2012 粉末冶金材料科学与工程 17 339Google Scholar

    Zhang Y M, He X B, Shen X Y, Liu Q, Qu X H 2012 Mater. Sci. Eng. Powder. Metall. 17 339Google Scholar

    [16]

    许尧, 薛鹏举, 魏青松, 史玉生 2013 热加工工艺 42 111

    Xu Y, Xue P J, Wei Q S, Shi Y S 2013 Hot Working Technol. 42 111 (in Chinese)

    [17]

    Fu J J, Zhao L X, Cao H C, Sun X J, Sun B J, Wang J X, Li J M 2016 AIP Adv. 6 055219Google Scholar

    [18]

    Kuball M, Pomeroy J W 2016 IEEE Trans. Device Mater. Reliab. 16 667Google Scholar

    [19]

    Pomeroy J W, Bernardoni M, Dumka D C, Fanning D M, Kuball M 2014 Appl. Phys. Lett. 104 083513Google Scholar

    [20]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Kuball M 2015 Appl. Phys. Lett. 106 223101Google Scholar

    [21]

    Pomeroy J W, Middleton C, Singh M, Dalcanale S, Uren M J, Wong M H, Kuball M 2018 IEEE Electron Device Lett. 40 189

    [22]

    Sarua A, Ji H, Kuball M, Uren M J, Martin T, Hilton K P, Balmer R S 2006 IEEE Trans. Electron Devices. 53 2438Google Scholar

    [23]

    Wang A, Tadjer M J, Calle F 2013 Semicond. Sci. Technol. 28 055010Google Scholar

    [24]

    Guo H, Kong Y, Chen T 2017 Diamond Relat. Mater. 73 260Google Scholar

    [25]

    Zou B, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Diamond Relat. Mater. 95 28Google Scholar

    [26]

    Riedel G J, Pomeroy J W, Hilton K P, Maclean J O, Wallis D J, Uren M J, Pozina G 2008 IEEE Electron Device Lett. 30 103

    [27]

    Liu K, Zhao J W, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Chin. Phys. B 28 060701Google Scholar

  • 图 1  (a)被测GaN高电子迁移率场效应管器件结构以及拉曼热测量的示意图; (b)被测器件在50 ℃和300 ℃的拉曼特征峰: 包括GaN外延的E2(high)和A1(LO)峰, 以及SiC衬底的FTO峰

    Fig. 1.  (a) Schematic structure of the GaN-on-SiC HEMT under test in the Raman optothermal measurement; (b) Raman peaks of the GaN-on-SiC HEMT at 50 ℃ and 300 ℃, including the E2(high) and A1(LO) peaks of the GaN epitaxy and the FTO peak of the SiC substrate.

    图 2  (a) GaN A1(LO)拉曼峰随温度的变化关系, 线性拟合得到的温度系数为–0.026 cm–1·K–1; (b) SiC FTO拉曼峰随温度的变化关系, 线性拟合得到的温度系数为–0.023 cm–1·K–1

    Fig. 2.  (a) Position of the GaN A1(LO) Raman peak as a function of temperature. The temperature coefficient from the linear fit is –0.026 cm–1·K–1; (b) position of the SiC FTO Raman peak as a function of temperature. The temperature coefficient from the linear fit is –0.023 cm–1·K–1.

    图 3  (a) GaN A1(LO)拉曼峰随器件功率密度的变化关系, 线性拟合得到的功率系数为–1.86 cm–1·mm/W; (b) SiC FTO拉曼峰随器件功率密度的变化关系, 线性拟合得到的功率系数为–1.25 cm–1·mm/W的功率系数

    Fig. 3.  (a) Position of the GaN A1(LO) Raman peak as a function of the device power density. The power density coefficient from the linear fit is –1.86 cm–1·mm/W; (b) position of the SiC FTO Raman peak as a function of the device power density. The power density coefficient from the linear fit is –1.25 cm–1·mm/W.

    图 4  (a)铜/石墨法兰封装器件GaN层、SiC上表层和封装法兰的温度随功率密度的变化; (b)铜/石墨法兰封装器件GaN层和SiC上表层的温度差、GaN层和封装法兰之间的温度差随功率密度的变化; (c)铜钼法兰封装器件GaN层、SiC上表层和封装法兰的温度随功率密度的变化; (d)铜钼法兰封装器件GaN层和SiC上表层的温度差、GaN层和封装法兰之间的温度差随功率密度增加的变化

    Fig. 4.  (a) Measured temperature of GaN, SiC, and the Cu/graphite flange as a function of the device power density; (b) temperature differences between GaN and SiC, and between GaN and and the Cu/graphite flange as a function of the device power density; (c) measured temperature of GaN, SiC, and the CuMo flange as a function of the device power density; (b) temperature differences between GaN and SiC, and between GaN and and the CuMo flange as a function of the device power density.

    图 5  (a)铜/石墨法兰封装的GaN器件的GaN外延和SiC衬底上表层温度的模拟值(线)和实测值(点); (b)铜钼法兰GaN电子器件的结温和SiC衬底上表层温度的模拟值和实测值的对比; (c) 1.43 W/mm功率密度下铜/石墨法兰和铜钼法兰封装GaN器件在垂直器件表面方向上的温度分布; (d)铜/石墨法兰和铜钼法兰封装GaN器件各层材的热阻占比(其中TBR的材料为AlN)

    Fig. 5.  (a) Simulated (line) and measured (dot) junction temperatures of the Cu/graphite flanged device; (b) simulated (line) and measured (dot) junction temperatures of the CuMo flanged device; (c) depth wise temperature distribution of the Cu/graphite flanged device and the CuMo flanged device at the power density of 1.43 W/mm; (d) thermal resistance of each layer within the Cu/graphite flanged device and the CuMo flanged device (The material of TBR is AlN).

    表 1  两种铜基法兰封装GaN器件的热阻对比

    Table 1.  Thermal resistance of GaN HEMT with different Cu-based flange materials.

    GaN场效应管法兰封装材料热导率/W·(m·K)–1GaN-SiC间热阻/mm·K·W–1器件整体热阻/mm·K·W–1
    铜/石墨30014.742.9
    铜钼16714.452.8
    下载: 导出CSV

    表 2  有限元热仿真分析中使用的各层材料的尺寸及热导率

    Table 2.  Dimensions and thermal conductivity of each layer in the GaN-on-SiC HEMT used in the finite element device thermal simulation.

    材料厚度/μm热导率/ W·(m·K) –1
    AlGaN/GaN1.2160 × (T/300)–1.42[23]
    AlN0.02拟合提取出等效界面热阻约为50 m2·K/GW
    SiC100400 × (T/300)–1[23]
    AuSn1257[24]
    铜钼1000167[24]
    铜/石墨1000300
    下载: 导出CSV
  • [1]

    Huang H, Sun Z, Cao Y, Li F, Zhang F, Wen Z, Hu L 2018 J. Phys. D: Appl. Phys. 51 345102Google Scholar

    [2]

    Huang H, Li F, Sun Z, Cao Y 2018 Micromachines 9 658Google Scholar

    [3]

    Bagnall K R, Saadat O I, Joglekar S, Palacios T, Wang E N 2017 IEEE Trans. Electron Devices. 64 2121Google Scholar

    [4]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron Devices. 64 779Google Scholar

    [5]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [6]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [7]

    Wu Y F, Moore M, Saxler A, Wisleder T, Parikh P 2006 64th Device Research Conference IEEE State College, PA, USA, June 26–28, 2006 p151

    [8]

    Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416Google Scholar

    [9]

    Sun H R, Pomeroy J W, Simon R B, Francis D, Faili F, Twitchen D J, Kuball M 2016 IEEE Electron Device Lett. 37 621Google Scholar

    [10]

    Won Y, Cho J, Agonafer D, Asheghi M, Goodson K E 2015 IEEE Trans. Compon., Packag., Manuf. Technol. 5 737Google Scholar

    [11]

    Sun H R, Simon R B, Pomeroy J W, Francis D, Faili F, Twitchen D J, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [12]

    Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827Google Scholar

    [13]

    Ma Z H, Cao H C, Lin S, Li X D, Zhao L X 2019 Solid-State Electron. 156 92Google Scholar

    [14]

    Manoi A, Pomeroy J W, Killat N, Kuball M 2010 IEEE Electron Device Lett. 31 1395Google Scholar

    [15]

    张昊明, 何新波, 沈晓宇, 刘谦, 曲选辉 2012 粉末冶金材料科学与工程 17 339Google Scholar

    Zhang Y M, He X B, Shen X Y, Liu Q, Qu X H 2012 Mater. Sci. Eng. Powder. Metall. 17 339Google Scholar

    [16]

    许尧, 薛鹏举, 魏青松, 史玉生 2013 热加工工艺 42 111

    Xu Y, Xue P J, Wei Q S, Shi Y S 2013 Hot Working Technol. 42 111 (in Chinese)

    [17]

    Fu J J, Zhao L X, Cao H C, Sun X J, Sun B J, Wang J X, Li J M 2016 AIP Adv. 6 055219Google Scholar

    [18]

    Kuball M, Pomeroy J W 2016 IEEE Trans. Device Mater. Reliab. 16 667Google Scholar

    [19]

    Pomeroy J W, Bernardoni M, Dumka D C, Fanning D M, Kuball M 2014 Appl. Phys. Lett. 104 083513Google Scholar

    [20]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Kuball M 2015 Appl. Phys. Lett. 106 223101Google Scholar

    [21]

    Pomeroy J W, Middleton C, Singh M, Dalcanale S, Uren M J, Wong M H, Kuball M 2018 IEEE Electron Device Lett. 40 189

    [22]

    Sarua A, Ji H, Kuball M, Uren M J, Martin T, Hilton K P, Balmer R S 2006 IEEE Trans. Electron Devices. 53 2438Google Scholar

    [23]

    Wang A, Tadjer M J, Calle F 2013 Semicond. Sci. Technol. 28 055010Google Scholar

    [24]

    Guo H, Kong Y, Chen T 2017 Diamond Relat. Mater. 73 260Google Scholar

    [25]

    Zou B, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Diamond Relat. Mater. 95 28Google Scholar

    [26]

    Riedel G J, Pomeroy J W, Hilton K P, Maclean J O, Wallis D J, Uren M J, Pozina G 2008 IEEE Electron Device Lett. 30 103

    [27]

    Liu K, Zhao J W, Sun H R, Guo H X, Dai B, Zhu J Q 2019 Chin. Phys. B 28 060701Google Scholar

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 蒋福春, 刘瑞友, 彭冬生, 刘文, 柴广跃, 李百奎, 武红磊. 基于光谱法的发光二极管稳态热阻测量方法. 物理学报, 2021, 70(9): 098501. doi: 10.7498/aps.70.20201093
    [3] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [6] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [7] 郭春生, 李世伟, 任云翔, 高立, 冯士维, 朱慧. 加载功率与壳温对AlGaN/GaN高速电子迁移率晶体管器件热阻的影响. 物理学报, 2016, 65(7): 077201. doi: 10.7498/aps.65.077201
    [8] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究. 物理学报, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [9] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [10] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] 陈海鹏, 曹军胜, 郭树旭. 高功率半导体激光器结温与1/f噪声的关系研究. 物理学报, 2013, 62(10): 104209. doi: 10.7498/aps.62.104209
    [12] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [13] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [14] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究. 物理学报, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [15] 顾江, 王强, 鲁宏. AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究. 物理学报, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [16] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [17] 韩勇, 刘燕文, 丁耀根, 刘濮鲲. 螺旋线慢波结构中界面热阻率的研究. 物理学报, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [18] 柳雄斌, 过增元. 换热器性能分析新方法. 物理学报, 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
    [19] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
计量
  • 文章访问数:  7036
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-14
  • 修回日期:  2019-10-29
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回