搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管的可控长度拾取及导电性分析

王亚洲 马立 杨权 耿松超 林旖旎 陈涛 孙立宁

引用本文:
Citation:

碳纳米管的可控长度拾取及导电性分析

王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁

Length-controllable picking method and conductivity analysis of carbon nanotubes

Wang Ya-Zhou, Ma Li, Yang Quan, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning
PDF
HTML
导出引用
  • 拾取指定长度的半导体性碳纳米管对大规模制造碳纳米管场效应管具有重要意义. 本文提出了一种利用原子力显微镜探针和钨针对碳纳米管进行可控长度拾取的方法并进行了碳纳米管导电性分析. 在扫描电子显微镜下搭建微纳操作系统, 针对切割操作过程中原子力显微镜探针、钨针和碳纳米管的接触情况进行了力学建模和拾取长度误差分析. 建立了单根金属性碳纳米管、单根半导体性碳纳米管及碳纳米管束与钨针接触的电路模型, 推导了接入不同性质碳纳米管后电路的电流电压特性方程. 使用原子力显微镜探针对碳纳米管的空间位姿进行调整, 控制钨针对碳纳米管上目标位置进行通电切割, 同时获取切割电路中的电流电压数据. 实验结果表明, 本文提出的方法能够有效控制所拾取碳纳米管的长度, 增加碳纳米管与原子力显微镜探针的水平接触长度能够减小碳纳米管形变导致的拾取长度误差, 建立的电流电压特性方程能够用于分析碳纳米管的导电性.
    In this paper, a length-controllable picking-up method of carbon nanotubes (CNTs) is proposed and the electrical performance data utilized for the conductivity analysis of CNT are also obtained. The micro-nano-operation system inside scanning electron microscope (SEM) is composed of 4 manipulation units each with 3 degrees of freedom, which is driven by piezoelectric ceramics and flexure hinges. In this micro manipulation system, an atomic force microscope (AFM) probe is used as the end effector to adjust the spatial pose of the CNT based on van der Waals force and two tungsten needles are used to cut the CNT from the target length and to measure the I-V characteristic data simultaneously. At first, the AFM probe is moved in the z direction to approach to the CNT until the end of the CNT is adsorbed onto the surface of the AFM probe. And then the AFM probe moves alternately in the x and z direction in order to stretch the CNT into a horizontal straight line, only in this way can the length of the CNT be measured accurately and can the cutting position be determined. Two tungsten needles cleaned by using hydrofluoric acid to remove the oxide layer are controlled to contact both sides of the cutting position on CNT and connected to the TECK 2280S power supply through the electric cabinet to apply a gradually increasing DC voltage, and the current in the circuit is measured and recorded by the TECK DMM7510 until the current abruptly changes to zero which indicates that the CNT between the tungsten needles has been cut off. The stress of the CNT in contact with the tungsten needles and the AFM probe are analyzed. The modeling of van der Waals force between AFM probe and CNT which can influence the pick-up length error caused by the deformation of CNT under the force of tungsten needles is completed. It is found that the contact length of them and the pick-up length error decrease while the van der Waals force between the AFM probe and CNT increases. The circuit models for contact between the tungsten needles and three operating objects, such as semiconducting CNT, metallic CNT and CNT bundle, are also established. In addition, the I-V characteristic equations of circuit model which can be used to fit the I-V data are derived separately. The CNT pick-up experiment is carried out and the results demonstrate that the proposed picking method can control the length of CNT effectively, but the conductivity of CNT can also be judged by fitting the I-V obtained experiment data through the derived I-V characteristic equations.
      通信作者: 马立, malian@shu.edu.cn ; 陈涛, chent@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61573238, 61433010)资助的课题
      Corresponding author: Ma Li, malian@shu.edu.cn ; Chen Tao, chent@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573238, 61433010)
    [1]

    Iijima S 1991 Nature 354 56Google Scholar

    [2]

    Brady G J, Way A J, Safron N S, Evensen H T, Gopalan P, Arnold M S 2016 Sci. Adv. 2 e1601240Google Scholar

    [3]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [4]

    Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar

    [5]

    Lee C S, Pop E, Franklin A D, Haensch W, Wong H S P 2015 IEEE Trans. Electron Dev. 62 3061

    [6]

    Lundstrom M S, Antoniadis D A 2014 IEEE Trans. Electron Dev. 61 225Google Scholar

    [7]

    刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华 2013 物理学报 62 147308Google Scholar

    Liu X H, Zhao H L, Li T Y, Zhang R, Li S J, Ge C H 2013 Acta Phys. Sin. 62 147308Google Scholar

    [8]

    刘红, 印海建, 夏树宁 2009 物理学报 58 8489Google Scholar

    Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489Google Scholar

    [9]

    Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017 Science 355 271Google Scholar

    [10]

    Zhang S C, Kang L X, Wang X, Tong L M, Yang L W, Wang Z Q, Qi K, Deng S B, Li Q W, Bai X D, Ding F, Zhang J 2017 Nature 543 234Google Scholar

    [11]

    Collins P G, Arnold M S, Avouris P 2001 Science 292 706Google Scholar

    [12]

    Tulevski G S, Franklin A D, Afzali A 2013 ACS Nano 7 2971Google Scholar

    [13]

    Fukuda T, Arai F, Dong L X 2003 Proc. IEEE 91 1803

    [14]

    Wei X L, Chen Q, Liu Y, Peng L M 2007 Nanotechnology 18 185503Google Scholar

    [15]

    Eichhorn V, Fatikow S, Wortmann T, Stolle C, Edeler C, Jasper D, Sardan O, Bøggild P, Boetsch G, Canales C, Clavel R 2009 IEEE International Conference on Robotics and Automation Kobe, Japan, May 12−17, 2009 p1826

    [16]

    Eichhorn V, Fatikow S, Wich T, Dahmen C, Sievers T, Andersen K N, Carlson K, Bøggild P 2008 J. Micro-Nano Mechatron. 4 27Google Scholar

    [17]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro Nano Lett. 11 645Google Scholar

    [18]

    Ding H Y, Shi C Y, Ma L, Yang Z, Wang M Y, Wang Y Q, Chen T, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [19]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE-ASME Trans. Mechatron. 22 845Google Scholar

    [20]

    An L, Friedrich C R 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 272 169Google Scholar

    [21]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 2017 5910734

    [22]

    Yu N, SHI Q, Nakajima M, Wang H P, Yang Z, Sun L N, Huang Q, Fukuda T 2017 J. Micromech. Microeng. 27 105007Google Scholar

    [23]

    Li J, He Y J, Han Y M, Liu K, Wang J P, Li Q Q, Fan S S, Jiang K L 2012 Nano Lett. 12 4095Google Scholar

    [24]

    Li D Q, Wei Y, Zhang J, Wang J T, Lin Y H, Liu P, Fan S S, Jiang K L 2017 Nano Res. 10 1896Google Scholar

    [25]

    Venema L C, Wildöer J W G, Temminck H L J T, Dekker C 1997 Appl. Phys. Lett. 71 2629Google Scholar

    [26]

    Yang L, Greenfeld I, Wagner H D 2016 Sci. Adv. 2 e1500969Google Scholar

    [27]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Fukuda T 2018 Acta Phys. Sin. 67 136801Google Scholar

    [28]

    Lan C, Strsungsitthisunti P, Amama P B, Fisher T, Xu X 2008 Nanotechnology 19 125703Google Scholar

    [29]

    Zhang Z Y, Jin C H, Liang X L, Chen Q, Peng L M 2006 Appl. Phys. Lett. 88 073102Google Scholar

    [30]

    Zhang Z Y, Yao K, Liu Y, Jin C H, Liang X L, Chen Q, Peng L M 2007 Adv. Funct. Mater. 17 2478Google Scholar

    [31]

    Yu N, Nakajima M, Shi Q, Takeuchi M, Yang Z, Huang Q, Fukuda T 2015 IEEE/SICE International Symposium on System Integration (SII) Nagoya, Japan, December 11−13, 2015 p956

  • 图 1  微纳操作系统 (a) 微纳操作台; (b) AFM探针; (c) 钨针; (d) CNTs样品

    Fig. 1.  Micro-nano manipulation system: (a) Micro-nano manipulation stage; (b) AFM probe; (c) tungsten probe; (d) CNTs sample.

    图 2  接触力学分析示意图

    Fig. 2.  Schematic diagram of mechanics during contact.

    图 3  AFM探针与CNT的水平接触

    Fig. 3.  Horizontal contact of AFM probe and CNT.

    图 4  CNT切割及导电性测量电路

    Fig. 4.  Circuit for CNT cutting and conductivity measurement.

    图 5  L1为15 μm时不同L3长度CNT的弯曲变形 (a), (d) L3 = 4.10 μm; (b), (e) L3 = 6.41 μm; (c), (f) L3 = 8.24 μm

    Fig. 5.  Bending deformation of CNT with same L1 (15 μm) and different L3: (a), (d) L3 = 4.10 μm; (b), (e) L3 = 6.41 μm; (c), (f) L3 = 8.24 μm.

    图 6  CNTs及探针位置分布

    Fig. 6.  Position of CNTs and probes.

    图 7  AFM探针拉伸CNT操作示意图

    Fig. 7.  Stretching of CNT with AFM probe

    图 8  接触检测与位姿判断

    Fig. 8.  Contact detection and position judgment.

    图 9  CNT切割过程 (a)钨针与CNT接触; (b) CNT断裂

    Fig. 9.  Cutting process: (a) Contact of probes and CNT; (b) CNT’s breakdown.

    图 10  CNT的I-V数据及拟合曲线

    Fig. 10.  I-V data of CNT and fitting curve.

    图 11  CNT管束的I-V数据及拟合曲线

    Fig. 11.  I-V data of CNT bundle and fitting curves.

    表 1  微纳操作单元性能参数

    Table 1.  Performance parameters of micro-nano operating unit.

    性能参数取值
    粗定位运动范围/mm$10 \times 10 \times 5$
    最大运动速度/mm·s–1 > 3
    最小运动步长/nm < 100
    精定位运动范围/μm$20$
    最大运动速度/μm·s–1$ > 45$
    开环控制分辨率/nm0.1
    闭环控制分辨率/nm1
    精度/nm5
    下载: 导出CSV
  • [1]

    Iijima S 1991 Nature 354 56Google Scholar

    [2]

    Brady G J, Way A J, Safron N S, Evensen H T, Gopalan P, Arnold M S 2016 Sci. Adv. 2 e1601240Google Scholar

    [3]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [4]

    Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar

    [5]

    Lee C S, Pop E, Franklin A D, Haensch W, Wong H S P 2015 IEEE Trans. Electron Dev. 62 3061

    [6]

    Lundstrom M S, Antoniadis D A 2014 IEEE Trans. Electron Dev. 61 225Google Scholar

    [7]

    刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华 2013 物理学报 62 147308Google Scholar

    Liu X H, Zhao H L, Li T Y, Zhang R, Li S J, Ge C H 2013 Acta Phys. Sin. 62 147308Google Scholar

    [8]

    刘红, 印海建, 夏树宁 2009 物理学报 58 8489Google Scholar

    Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489Google Scholar

    [9]

    Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017 Science 355 271Google Scholar

    [10]

    Zhang S C, Kang L X, Wang X, Tong L M, Yang L W, Wang Z Q, Qi K, Deng S B, Li Q W, Bai X D, Ding F, Zhang J 2017 Nature 543 234Google Scholar

    [11]

    Collins P G, Arnold M S, Avouris P 2001 Science 292 706Google Scholar

    [12]

    Tulevski G S, Franklin A D, Afzali A 2013 ACS Nano 7 2971Google Scholar

    [13]

    Fukuda T, Arai F, Dong L X 2003 Proc. IEEE 91 1803

    [14]

    Wei X L, Chen Q, Liu Y, Peng L M 2007 Nanotechnology 18 185503Google Scholar

    [15]

    Eichhorn V, Fatikow S, Wortmann T, Stolle C, Edeler C, Jasper D, Sardan O, Bøggild P, Boetsch G, Canales C, Clavel R 2009 IEEE International Conference on Robotics and Automation Kobe, Japan, May 12−17, 2009 p1826

    [16]

    Eichhorn V, Fatikow S, Wich T, Dahmen C, Sievers T, Andersen K N, Carlson K, Bøggild P 2008 J. Micro-Nano Mechatron. 4 27Google Scholar

    [17]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro Nano Lett. 11 645Google Scholar

    [18]

    Ding H Y, Shi C Y, Ma L, Yang Z, Wang M Y, Wang Y Q, Chen T, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [19]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE-ASME Trans. Mechatron. 22 845Google Scholar

    [20]

    An L, Friedrich C R 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 272 169Google Scholar

    [21]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 2017 5910734

    [22]

    Yu N, SHI Q, Nakajima M, Wang H P, Yang Z, Sun L N, Huang Q, Fukuda T 2017 J. Micromech. Microeng. 27 105007Google Scholar

    [23]

    Li J, He Y J, Han Y M, Liu K, Wang J P, Li Q Q, Fan S S, Jiang K L 2012 Nano Lett. 12 4095Google Scholar

    [24]

    Li D Q, Wei Y, Zhang J, Wang J T, Lin Y H, Liu P, Fan S S, Jiang K L 2017 Nano Res. 10 1896Google Scholar

    [25]

    Venema L C, Wildöer J W G, Temminck H L J T, Dekker C 1997 Appl. Phys. Lett. 71 2629Google Scholar

    [26]

    Yang L, Greenfeld I, Wagner H D 2016 Sci. Adv. 2 e1500969Google Scholar

    [27]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Fukuda T 2018 Acta Phys. Sin. 67 136801Google Scholar

    [28]

    Lan C, Strsungsitthisunti P, Amama P B, Fisher T, Xu X 2008 Nanotechnology 19 125703Google Scholar

    [29]

    Zhang Z Y, Jin C H, Liang X L, Chen Q, Peng L M 2006 Appl. Phys. Lett. 88 073102Google Scholar

    [30]

    Zhang Z Y, Yao K, Liu Y, Jin C H, Liang X L, Chen Q, Peng L M 2007 Adv. Funct. Mater. 17 2478Google Scholar

    [31]

    Yu N, Nakajima M, Shi Q, Takeuchi M, Yang Z, Huang Q, Fukuda T 2015 IEEE/SICE International Symposium on System Integration (SII) Nagoya, Japan, December 11−13, 2015 p956

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 林旖旎, 马立, 杨权, 耿松超, 叶茂盛, 陈涛, 孙立宁. 径向压缩碳纳米管的电子输运性质. 物理学报, 2022, 71(2): 027301. doi: 10.7498/aps.71.20211370
    [3] 林旖旎, 马立, 杨权, 陈涛. 径向压缩碳纳米管的电子输运性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211370
    [4] 马玉龙, 向伟, 金大志, 陈磊, 姚泽恩, 王琦龙. 碳纳米管薄膜场蒸发效应. 物理学报, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [5] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [6] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [7] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率. 物理学报, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [8] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [9] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [10] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [11] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [12] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [13] 张宇, 温斌, 宋肖阳, 李廷举. 不同氮掺杂浓度碳纳米管的制备及其成键特性分析. 物理学报, 2010, 59(5): 3583-3588. doi: 10.7498/aps.59.3583
    [14] 刘红, 印海建, 夏树宁. 形变碳纳米管场效应晶体管的电学性质. 物理学报, 2009, 58(12): 8489-8500. doi: 10.7498/aps.58.8489
    [15] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [16] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [17] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发. 物理学报, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [18] 张忠强, 张洪武, 王 磊, 郑勇刚, 王晋宝. 液体水银在碳纳米管中传输的压力控制模型. 物理学报, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [19] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [20] 张 华, 陈小华, 张振华, 邱 明, 许龙山, 杨 植. 接枝羧基的有限长碳纳米管电子结构的第一性原理研究. 物理学报, 2006, 55(6): 2986-2991. doi: 10.7498/aps.55.2986
计量
  • 文章访问数:  5250
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-26
  • 修回日期:  2019-12-03
  • 刊出日期:  2020-03-20

/

返回文章
返回