搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率磁控管用新型Y2Hf2O7陶瓷阴极研究

漆世锴 王小霞 王兴起 胡明玮 刘理 曾伟

引用本文:
Citation:

大功率磁控管用新型Y2Hf2O7陶瓷阴极研究

漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟

A novel Y2Hf2O7 ceramic cathode applied to high power magnetron tube

Qi Shi-Kai, Wang Xiao-Xia, Wang Xing-Qi, Hu Ming-Wei, Liu Li, Zeng Wei
PDF
HTML
导出引用
  • 为了提高大功率磁控管的输出功率, 延长其使用寿命, 首次采用稀土氧化物Y2O3和过渡金属氧化物HfO2制备大功率磁控管用Y2Hf2O7 (铪酸钇)陶瓷阴极, 并对该阴极的热发射特性和寿命特性等进行了测试, 热发射测试结果显示该阴极在1300, 1350, 1400, 1450, 1500, 1550, 1600 ℃br亮度温度, 300 V阳极电压下即可分别提供0.15, 0.2, 0.5, 1.1, 1.8, 2.5, 3.5 A/cm2的发射电流密度. 利用理查森直线法求得该阴极的绝对零度逸出功为1.26 eV, 理查森-道舒曼公式法求得该阴极在1450, 1500, 1550, 1600 ℃br亮度温度下的有效逸出功分别为3.10, 3.15, 3.21, 3.26 eV. 寿命实验结果显示, 该阴极在工作温度为1400 ℃br, 直流负载为0.5 A/cm2的条件下, 寿命超过4000 h. 最后, 利用X射线衍射仪、扫描电子显微镜、X射线能谱分析仪、俄歇电子能谱仪以及结合氩离子刻蚀技术的深度俄歇能谱仪等分别对该阴极活性物质的分子结构, 阴极表面微观形貌、元素成分及含量等进行了研究. 结果表明, 高温烧结合成了单一的铪酸钇物相, 高温烧结过程中当一种Y3+价稀土氧化物Y2O3掺入Hf4+价的过渡金属氧化物HfO2时, 会发生离子置换固溶, 为了保持铪酸钇晶格的电中性, 晶格中就会产生一个氧空位. 当阴极在激活、老练、热发射测试时, 会加速氧空位的生成, 产生的氧空位越多, 阴极表面导电性就会越好, 这间接降低了逸出功, 从而提高了阴极的热发射能力.
    Nowadays, the output power and lifetime of a single magnetron are far from the requirements of industrial applications. So the new materials and methods are urgently needed to enhance the output power and prolong the lifetime of the magnetron. As the heart of a magnetron, cathode, whose quality directly affects the output power and lifetime of the magnetron, plays an important role. In order to enhance the output power and prolong the lifetime of the high power magnetron, a method of doping rare earth oxide Y2O3 into transition metal oxide HfO2 is used to prepare Y2Hf2O7 ceramic cathode. The thermionic emission and lifetime characteristics of the Y2Hf2O7 cathode are measured. The results show that the cathode can provide 0.15, 0.2, 0.5, 1.1, 1.8, 2.5, 3.5 A/cm2 current density for the space charge limitation at 1300, 1350, 1400, 1450, 1500, 1550, 1600 ℃br under 300 V anode voltage, respectively. Absolute zero work function of the cathode is only 1.26 eV obtained by the Richardson line method. The effective work function of the cathode is 3.10, 3.15, 3.21, 3.26 eV obtained by the Richardson-Dushman formula at 1450, 1500, 1550, 1600 ℃br respectively. The lifetime of the cathode is more than 4000 h under an initial load of 0.5 A/cm2 at 1400 ℃br, the lifetime which is much longer than the 2000 h average life span for the 2450 MHz continuous wave magnetron cathode used in production. Finally, the molecular structure, surface microstructure, element composition and content of the Y2Hf2O7 ceramic cathode are analyzed by the X-ray diffraction, scanning electron microscope, energy dispersive spectrometer, Auger electron spectroscopy with argon ion etching respectively. The analysis results show that the single Y2Hf2O7 phase forms under the high sintering temperature. When the Y3+ valence Y2O3 is doped into the Hf4+ valence HfO2, the substitutional solid solution will form. An oxygen vacancy is generated in the lattice, thus maintaining the electrical neutrality of the Y2Hf2O7 lattice. During the cathode activating, aging, and thermally testing, the oxygen vacancy is generated fast. The more the obtained oxygen vacancies, the higher the conductivity of the cathode surface will be. Besides, due to the improvement of the electro-conductivity thus enhancing the thermionic emission capability of the cathode, the work function of the cathode can be reduced.
      通信作者: 漆世锴, kaishiqi@126.com
    • 基金项目: 国家自然科学基金(批准号: 61841105, 61771454)、江西省自然科学基金(批准号: 20192BAB217001)、江西省教育厅科学技术项目(批准号: 180912)和江西省数控技术与应用实验室项目批准号: 8412409) 资助的课题
      Corresponding author: Qi Shi-Kai, kaishiqi@126.com
    • Funds: the National Natural Science Foundation of China (Grant Nos. 61841105, 61771454), the National Natural Science Foundation of Jiangxi, China (Grant No. 20192BAB217001), the Education Science and Technology Project of Jiangxi, China (Grant No. 180912), and the Numerical Control Technology and Application Laboratory Project of Jiangxi, China (Grant No. 8412409)
    [1]

    Jacqueline M R B, Paré J R J 2007 J. Microwave Power EE. 42 24

    [2]

    Lester E, Kingman S, Dodds C 2005 Fuel 84 423Google Scholar

    [3]

    岳松, 张兆传, 高东平 2013 物理学报 62 178401Google Scholar

    Yue S, Zhang Z C, Gao D P 2013 Acta Phys. Sin. 62 178401Google Scholar

    [4]

    杨宋寒, 刘友春, 袁正勇 2014 中国专利ZL 201410193925.2

    Yang S H, Liu Y C, Yuan Z Y 2014 CN Patent ZL 201410193925.2

    [5]

    Zhang E Q 1980 IEEETrans. Elec. Dev. 27 1280Google Scholar

    [6]

    电子管设计手册编辑委员会 1979 磁控管设计手册 (北京: 国防工业出版社) 第193, 211, 420页

    Electronic tube design handbook editorial Committee 1979 Magnetron Design Handbook (Beijing: National Defence Industry Press) pp193, 211, 420 (in Chinese)

    [7]

    Li SG, Yan T C, Li F L, Yang J S, Shi W 2016 IEEE Trans. Plasma. Sci. 44 1386Google Scholar

    [8]

    Huang H P, Huang K M, Liu C J 2018 IEEE Microw Wirel Co. 28 509Google Scholar

    [9]

    Buxbaum C, Gessinger G 1978 US Patent 4083811

    [10]

    Goebel D M, Hirooka Y, Campbell G A 1985 Rev. Sci. Instrum 56 1888Google Scholar

    [11]

    Frank B, Gartner G 1985 US Patent 4533852

    [12]

    Tadashi S, Kiyosaki M 1990 JP Patent 59179754

    [13]

    Rao G S, Dharmadhikari C V, Nigavekar A S 1989 J Vac Sci Technol 7 3269Google Scholar

    [14]

    Wang J S, Zhou M L, Ma S Y J, Zuo T Y 2006 J. Alloys Compd. 419 172Google Scholar

    [15]

    Zhang J X, Zhou M L, Zhou W Y, Wang J S, Nie Z R, Zuo T Y 2002 Trans: Nonferrous Met. Soc. China 12 43

    [16]

    Nie Z R, Zuo T Y, Zhou M L, Wang Y M, Wang J S 2000 J. Rare Earth 18 110Google Scholar

    [17]

    Bruining D H 1954 Physics and Application of Secondary Electron Emission (Oxford: Pergamon Press LTD) p19

    [18]

    刘学悫 1980 阴极电子学 (北京: 科学出版社) 第95, 97, 149, 211页

    Liu X Q 1980 Cathode Electronics (Beijing: Science Press) pp95, 149, 184, 211 (in Chinese)

    [19]

    漆世锴, 王小霞, 罗积润, 赵青兰, 李云, 2016 物理学报 65 057901Google Scholar

    Qi S K, Wang X X, Luo J R, Zhao Q L, Li Y 2016 Acta Phys. Sin. 65 057901Google Scholar

    [20]

    Qi S K, Wang X X, Luo J R, Zhao S K, Zhao Q L, Li Y, Zhang Q Proceedings of IVESC Saint-Petersburg, Russia, June 30–July 4, 2014 p18

    [21]

    Qi S K, Wang X X, Luo J R, Hu M W, Li Y 2015 Proceedings of IRMMW-THz Hong Kong, China, August 23–28, 2015 p12

    [22]

    漆世锴, 王小霞, 罗积润, 赵青兰, 张琪, 李云 2018 稀有金属材料与工程 473 784

    Qi S K, Wang X X, Luo J R, Zhao S K, Zhao Q L, Li Y, Zhang Q 2018 Rare Metal Mat. Eng. 473 784

    [23]

    漆世锴, 王小霞, 罗积润, 胡明玮, 李云 2016 无机材料学报 31 987Google Scholar

    Qi S K, Wang X X, Luo J R, Hu M W, Li Y 2016 J. Inorg. Mater. 31 987Google Scholar

    [24]

    Hu M W, Wang X X, Qi S K 2019 IEEE Trans. Elec. Dev. 66 3592Google Scholar

    [25]

    Wang X X, Liao X H, Luo J R, Zhao Q L, Zhang M, Wang Q F, Li Y 2012 IEEETrans. Elec. Dev. 59 491

    [26]

    常铁军, 祁欣 1999 材料近代分析测试方法 (哈尔滨: 哈尔滨工业大学出版社) 第124, 125页

    Chang T J, Qi X 1999 Modern Analysis Methods of Materials (Harbin: Harbin Institute of Technology Press) pp124, 125

  • 图 1  磁控管用新型铪酸钇陶瓷阴极剖面结构示意图

    Fig. 1.  Section schematic of the Y2Hf2O7 ceramic cathode.

    图 2  铪酸钇陶瓷阴极热发射测试装置示意图

    Fig. 2.  Schematic of the thermionic emission testing system for the Y2Hf2O7 ceramic cathode.

    图 3  直流发射电流密度随阳极电压变化曲线

    Fig. 3.  I-V curves of the Y2Hf2O7 ceramic cathode.

    图 4  阴极寿命特性曲线

    Fig. 4.  Lifetime curve of the Y2Hf2O7 ceramic cathode.

    图 5  铪酸钇陶瓷阴极$\lg {j_{\rm{e}}} \text{-} \sqrt {{U_{\rm{a}}}} $曲线

    Fig. 5.  $\lg {j_{\rm{e}}} \text{-} \sqrt {{U_{\rm{a}}}} $ curves of the Y2Hf2O7 ceramic cathode

    图 6  铪酸钇陶瓷阴极理查森直线

    Fig. 6.  Richardson curves of the Y2Hf2O7 ceramic cathode.

    图 7  电子发射活性物质SEM微观结构形貌图

    Fig. 7.  SEM image of the active substance.

    图 8  电子发射活性物质EDS谱图及含量

    Fig. 8.  EDS spectrum and element content of the active substance.

    图 9  电子发射活性物质XRD谱图

    Fig. 9.  XRD spectrum of the active substance.

    图 10  铪酸钇陶瓷阴极表面SEM微观结构形貌图

    Fig. 10.  SEM image of the Y2Hf2O7 ceramiccathode.

    图 11  铪酸钇陶瓷阴极表面EDS谱图及含量

    Fig. 11.  EDS spectrum and element content the cathode.

    图 12  铪酸钇陶瓷阴极表面AES谱图

    Fig. 12.  AES spectrum the Y2Hf2O7 ceramic cathode.

    图 13  不同元素含量随阴极表面深度的变化曲线 (a) O元素; (b) Y和Hf元素

    Fig. 13.  Element content as a function of the depth from the cathode surface: (a) O element; (b) Y and Hf element.

    图 14  铪酸钇陶瓷阴极表面能带示意图

    Fig. 14.  Energy band diagram of the Y2Hf2O7 ceramic cathode.

    表 1  O, Y, Hf, C元素原子百分数与氩离子蚀刻深度的关系

    Table 1.  O, Y, Hf, C element content as a function of the depth using argon ion etching method.

    Depth/nmElement content/at%
    OYHfC
    047.521.713.917.0
    344.221.815.019.0
    536.020.220.922.9
    1036.123.020.020.9
    3531.332.323.313.4
    10050.018.019.412.5
    20049.323.818.28.7
    50043.024.521.910.6
    下载: 导出CSV
  • [1]

    Jacqueline M R B, Paré J R J 2007 J. Microwave Power EE. 42 24

    [2]

    Lester E, Kingman S, Dodds C 2005 Fuel 84 423Google Scholar

    [3]

    岳松, 张兆传, 高东平 2013 物理学报 62 178401Google Scholar

    Yue S, Zhang Z C, Gao D P 2013 Acta Phys. Sin. 62 178401Google Scholar

    [4]

    杨宋寒, 刘友春, 袁正勇 2014 中国专利ZL 201410193925.2

    Yang S H, Liu Y C, Yuan Z Y 2014 CN Patent ZL 201410193925.2

    [5]

    Zhang E Q 1980 IEEETrans. Elec. Dev. 27 1280Google Scholar

    [6]

    电子管设计手册编辑委员会 1979 磁控管设计手册 (北京: 国防工业出版社) 第193, 211, 420页

    Electronic tube design handbook editorial Committee 1979 Magnetron Design Handbook (Beijing: National Defence Industry Press) pp193, 211, 420 (in Chinese)

    [7]

    Li SG, Yan T C, Li F L, Yang J S, Shi W 2016 IEEE Trans. Plasma. Sci. 44 1386Google Scholar

    [8]

    Huang H P, Huang K M, Liu C J 2018 IEEE Microw Wirel Co. 28 509Google Scholar

    [9]

    Buxbaum C, Gessinger G 1978 US Patent 4083811

    [10]

    Goebel D M, Hirooka Y, Campbell G A 1985 Rev. Sci. Instrum 56 1888Google Scholar

    [11]

    Frank B, Gartner G 1985 US Patent 4533852

    [12]

    Tadashi S, Kiyosaki M 1990 JP Patent 59179754

    [13]

    Rao G S, Dharmadhikari C V, Nigavekar A S 1989 J Vac Sci Technol 7 3269Google Scholar

    [14]

    Wang J S, Zhou M L, Ma S Y J, Zuo T Y 2006 J. Alloys Compd. 419 172Google Scholar

    [15]

    Zhang J X, Zhou M L, Zhou W Y, Wang J S, Nie Z R, Zuo T Y 2002 Trans: Nonferrous Met. Soc. China 12 43

    [16]

    Nie Z R, Zuo T Y, Zhou M L, Wang Y M, Wang J S 2000 J. Rare Earth 18 110Google Scholar

    [17]

    Bruining D H 1954 Physics and Application of Secondary Electron Emission (Oxford: Pergamon Press LTD) p19

    [18]

    刘学悫 1980 阴极电子学 (北京: 科学出版社) 第95, 97, 149, 211页

    Liu X Q 1980 Cathode Electronics (Beijing: Science Press) pp95, 149, 184, 211 (in Chinese)

    [19]

    漆世锴, 王小霞, 罗积润, 赵青兰, 李云, 2016 物理学报 65 057901Google Scholar

    Qi S K, Wang X X, Luo J R, Zhao Q L, Li Y 2016 Acta Phys. Sin. 65 057901Google Scholar

    [20]

    Qi S K, Wang X X, Luo J R, Zhao S K, Zhao Q L, Li Y, Zhang Q Proceedings of IVESC Saint-Petersburg, Russia, June 30–July 4, 2014 p18

    [21]

    Qi S K, Wang X X, Luo J R, Hu M W, Li Y 2015 Proceedings of IRMMW-THz Hong Kong, China, August 23–28, 2015 p12

    [22]

    漆世锴, 王小霞, 罗积润, 赵青兰, 张琪, 李云 2018 稀有金属材料与工程 473 784

    Qi S K, Wang X X, Luo J R, Zhao S K, Zhao Q L, Li Y, Zhang Q 2018 Rare Metal Mat. Eng. 473 784

    [23]

    漆世锴, 王小霞, 罗积润, 胡明玮, 李云 2016 无机材料学报 31 987Google Scholar

    Qi S K, Wang X X, Luo J R, Hu M W, Li Y 2016 J. Inorg. Mater. 31 987Google Scholar

    [24]

    Hu M W, Wang X X, Qi S K 2019 IEEE Trans. Elec. Dev. 66 3592Google Scholar

    [25]

    Wang X X, Liao X H, Luo J R, Zhao Q L, Zhang M, Wang Q F, Li Y 2012 IEEETrans. Elec. Dev. 59 491

    [26]

    常铁军, 祁欣 1999 材料近代分析测试方法 (哈尔滨: 哈尔滨工业大学出版社) 第124, 125页

    Chang T J, Qi X 1999 Modern Analysis Methods of Materials (Harbin: Harbin Institute of Technology Press) pp124, 125

  • [1] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [2] 张娟, 焦志强, 闫华杰, 陈福栋, 黄清雨, 康亮亮, 刘晓云, 王路, 袁广才. 微腔效应对顶发射串联蓝光有机电致发光器件性能的影响. 物理学报, 2020, 69(9): 096104. doi: 10.7498/aps.69.20191576
    [3] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性. 物理学报, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [4] 李凡, 张忻, 张久兴. [Ca24Al28O64]4+(4e)电子化合物的直接合成及热发射性能. 物理学报, 2019, 68(20): 206801. doi: 10.7498/aps.68.20190070
    [5] 陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪. 电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升. 物理学报, 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [6] 杨温渊, 董烨, 董志伟. 新型全腔输出半透明阴极相对论磁控管的理论和数值研究. 物理学报, 2016, 65(24): 248401. doi: 10.7498/aps.65.248401
    [7] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究. 物理学报, 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [8] 马莉, 沈光地, 陈依新, 蒋文静, 郭伟玲, 徐晨, 高志远. 新型AlGaInP系发光二极管饱和特性与寿命的研究. 物理学报, 2014, 63(3): 037201. doi: 10.7498/aps.63.037201
    [9] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频. 物理学报, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [10] 张敏, 王小霞, 罗积润, 廖显恒. 等离子喷涂含钪氧化物阴极制备及发射特性研究. 物理学报, 2012, 61(7): 077901. doi: 10.7498/aps.61.077901
    [11] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [12] 陈依新, 沈光地, 韩金茹, 李建军, 郭伟玲. 不同表面结构的半导体发光二极管的效率与寿命的研究. 物理学报, 2010, 59(1): 545-549. doi: 10.7498/aps.59.545
    [13] 熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江. Fe3O4-C核壳型纳米纤维的正电子研究. 物理学报, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [14] 师应龙, 董晨钟. C Ⅱ离子1s内壳层激发态的结构和衰变特性的理论研究. 物理学报, 2009, 58(4): 2350-2357. doi: 10.7498/aps.58.2350
    [15] 王小霞, 廖显恒, 罗积润, 赵青兰, 张晓伟. 新型贮存式氧化物阴极寿命机理的初步探讨. 物理学报, 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [16] 廖庆亮, 张 跃, 夏连胜, 齐俊杰, 黄运华, 邓战强, 高战军, 曹佳伟. 丝网印刷制备碳纳米管阴极的强流脉冲发射特性研究. 物理学报, 2008, 57(4): 2328-2333. doi: 10.7498/aps.57.2328
    [17] 廖庆亮, 张 跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张 篁. 碳纳米管阴极的强流脉冲发射性能研究. 物理学报, 2007, 56(9): 5335-5340. doi: 10.7498/aps.56.5335
    [18] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究. 物理学报, 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [19] 鲁 欣, 奚婷婷, 李英竣, 张 杰. 超短超强脉冲激光在空气中产生的电离通道的寿命研究. 物理学报, 2004, 53(10): 3404-3408. doi: 10.7498/aps.53.3404
    [20] 何煜, 郭文康, 邵其鋆, 须平. 自由电弧热发射阴极的物理模型. 物理学报, 2000, 49(3): 487-491. doi: 10.7498/aps.49.487
计量
  • 文章访问数:  7358
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-01
  • 修回日期:  2019-11-19
  • 刊出日期:  2020-02-05

/

返回文章
返回