搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维金字塔立体复合基底表面增强拉曼散射特性

吴美梅 张超 张灿 孙倩倩 刘玫

引用本文:
Citation:

三维金字塔立体复合基底表面增强拉曼散射特性

吴美梅, 张超, 张灿, 孙倩倩, 刘玫

Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate

Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei
PDF
HTML
导出引用
  • 表面增强拉曼散射(SERS)是一种广泛应用于化学反应检测、医学诊断和食品分析等领域的高灵敏度光谱技术. 基底结构的构建对提高探针分子的SERS信号有非常重要的影响. 本文利用聚甲基丙烯酸甲酯(PMMA)包裹银纳米颗粒制备了一种三维金字塔立体复合SERS基底, 实现了对罗丹明6G (R6G)分子的高灵敏度检测. 通过调节银纳米颗粒在PMMA丙酮溶液中的分散密度, 实现了光在金字塔谷内的有效振荡, 既保证了三维结构高密度的“热点”效应, 又避免了由于金属-分子相互作用引起的吸附探针分子变形导致的信号失真等问题. 同时, 有效防止了银纳米颗粒的氧化, 为探针分子提供更大的电磁增强作用范围, 使增强的拉曼信号产生稳定的输出. 此研究结果不仅提供了一种高性能、可重复使用的SERS基底的有效策略, 也会对未来设计改进三维结构的SERS基底有指导意义.
    Surface enhanced Raman scattering (SERS) is a highly sensitive spectroscopy technique, which is widely used in chemical reaction detecting, medical diagnostics, and food analysis. The construction of the substrate structure has a very important influence on enhancing the SERS signal of the probe molecule. In this paper, a three-dimensional (3D) pyramid stereo composite SERS substrate is prepared by using polymethyl methacrylate (PMMA) to encapsulate silver nanoparticles, which achieves high sensitivity detection of Rhodamine 6G (R6G) molecules. By adjusting the dispersion density of silver nanoparticles in the PMMA acetone solution, the effective oscillation of light in the pyramid valley is realized, which not only ensures the high-density "hot spot" effect of the 3D structure, but also avoids deforming the adsorption probe molecules caused by the metal-molecule interaction. It also effectively prevents the silver nanoparticles from being oxidized and provides a larger range of electromagnetic enhancement for probe molecules, resulting in a stable output of the enhanced Raman signal. This research result provides an effective strategy for designing a high performance and reusable SERS substrate, meanwhile, it has important guiding significance for further designing an SERS substrate with improved 3D structure in the future study.
    [1]

    Fleischmann M, Hendra P J, Mcquillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [2]

    Guerrini L, Krpetić Ž, van Lierop D, Alvarez Puebla A R, Graham D 2015 Angew. Chem. Int. Edit. 54 1144Google Scholar

    [3]

    Kubackova J, Fabriciova G, Miskovsky P, Jancura D, Sanchez-Cortes S 2015 Anal. Chem. 87 663Google Scholar

    [4]

    Zhang C, Li C, Yu J, Jiang S, Xu S, Yang C, Liu Y J, Gao X, Liu A, Man B 2018 Sensor. Actuat. B Chem. 258 163Google Scholar

    [5]

    Sotiriou G A, Blattmann C O, Deligiannakis Y 2015 Nanoscale 8 796

    [6]

    Fortuni B, Inose T, Uezono S, Toyouchi S, Umemoto K, Sekine S, Fujita Y, Ricci M, Lu G, Masuhara A, Hutchison JA, Latterini L, Uji I H 2017 Chem. Commun. 53 11298Google Scholar

    [7]

    冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林 2019 物理学报 68 147801Google Scholar

    Feng S L, Wang J Y, Chen S, Meng L Y, Shen S X, Yang Z L 2019 Acta Phys. Sin. 68 147801Google Scholar

    [8]

    Fan C, Zhu S, Xin H, Tian Y, Liang E 2017 J. Optics-UK 19 015401Google Scholar

    [9]

    张娜 2015 硕士学位论文 (苏州: 苏州大学)

    Zhang N 2015 M. S. Thesis (Suzhou: Soochow University) (in Chinese)

    [10]

    张星, 郝艳玲, 方炎 2013 光散射学报 2 5Google Scholar

    Zhang X, Hao Y L, Fang Y 2013 The Journal of Light Scattering 2 5Google Scholar

    [11]

    Xu S, Jiang S, Wang J, Wei J, Yue W, Ma Y 2016 Sens. Actuators, B 222 1175

    [12]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [13]

    Xu S, Tang W, Chase D B, Sparkset D L, Raboit J 2018 ACS Appl. Nano Mater. 1 1257

    [14]

    Xu W, Xiao J, Chen Y, Chen Y, Ling X, Zhang J 2013 Adv. Mater. 25 928Google Scholar

    [15]

    Sivashanmugan K, Liao J D, Liu B H, Yao C K 2013 Anal. Chim. Acta 800 56Google Scholar

    [16]

    Park S, Lee J, Ko H 2017 ACS Appl. Mater. Interfaces 9 44088Google Scholar

    [17]

    Yang C, Chen Y, Liu D, Chen C, Wang J, Fan Y, Huang S, Lei W 2018 ACS Appl. Mater. Interfaces 10 8317

    [18]

    Tang H, Meng G, Huang Q, Zhang Z, Huang Z, Zhu C 2012 Adv. Funct. Mater. 22 218Google Scholar

    [19]

    Li X, Chen G, Yang L, Zhen J, Liu J 2010 Adv. Funct. Mater. 20 2815Google Scholar

    [20]

    Lee S, Hahm M G, Vajtai R, Hashim D P, Thurakitseree T, Chipara A C, Ajayan P M, Hafneret J H 2012 Adv. Mater. 24 5261Google Scholar

    [21]

    黄晨玥 2016 硕士学位论文 (南京: 东南大学)

    Huang C Y 2016 M.S. Thesis (Nanjin: Southeast University) (in Chinese)

    [22]

    Yuan Z, Zhao S, Zhang L, Yu L, Li X, Lu Y 2017 RSC Adv. 7 11904Google Scholar

    [23]

    Smyth C A, Mirza I, Lunney J G, McCabe E M 2013 Appl. Surf. Sci. 264 31Google Scholar

    [24]

    Wang K, Sun D W, Pu H, Wei Q, Huang L 2019 ACS Appl. Mater. Interfaces 11 29177Google Scholar

    [25]

    Wang X, Bai X, Pang Z, Zhu J, Wu Y, Yang H, Qi Y, Wen X 2019 Opt. Mater. Express 9 1872Google Scholar

    [26]

    Gaballah S T, El-Nazer H A, Abdel-Monem R A, El-Liethy M A, Hemdan B A, Rabie S 2019 Int. J. Biol. Macromol. 121 707Google Scholar

    [27]

    Zhong L B, Yin J, Zheng Y M, Liu Q, Cheng X X, Luo F H 2014 Anal. Chem. 86 6262Google Scholar

    [28]

    Shiohara A, Langer J, Polavarapu L, Lizmarzán L M 2014 Nanoscale 6 9817Google Scholar

    [29]

    卢思辰, 高宇坤, 杨楠, 张晨萌, 尤汀汀, 殷鹏刚 2018 光谱学与光谱分析 38 176

    Lu S C, Gao Y K, Yang N, Zhang C M, You T T, Yin P G 2018 Spectroscopy and Spectral Analysis 38 176

    [30]

    Li C, Yu J, Xu S, Jiang S, Xiu X, Chen C, Liu A, Wu T, Man B, Zhang C 2018 Adv. Mater. Technol. 3 1800174Google Scholar

    [31]

    Yao G, Zhang H, Zhang S, Liao F, Huang Z, Bie B, Lin Y 2017 RSC Adv. 7 27281Google Scholar

    [32]

    Zhang X Y, Hu A, Zhang T, Xue X J, Wen J Z, Duley W W 2010 Appl. Phys. Lett. 96 043109Google Scholar

    [33]

    Peng B, Li Z, Mutlugun E, Hernández Martínez P L, Li D, Zhang Q, Gao Y, Demir H V, Xiong Q 2014 Nanoscale 6 5592Google Scholar

    [34]

    Jin L, She G, Wang X, Mu L, Shi W 2014 Appl. Surf. Sci. 320 591Google Scholar

    [35]

    Natan M J 2006 Faraday Discuss 132 321Google Scholar

  • 图 1  复合三维SERS基底(AgNPs@PMMA/P-Si)结构示意图

    Fig. 1.  Schematic diagram of AgNPs@PMMA/P-Si SERS substrate.

    图 2  (a) 金字塔硅基底的SEM图; (b)和(c)为银纳米颗粒浓度为0.75 g/mL 的AgNPs@PMMA/P-Si基底在不同倍数下的SEM图; (d) 银纳米颗粒的粒径分布图; (e)银纳米颗粒、银纳米颗粒与PMMA混合溶液的紫外吸收光谱

    Fig. 2.  (a) SEM image of P-Si substrate; (b) SEM image of AgNPs@PMMA/P-Si substrates with AgNPs concentration of 0.75 g/mL in different magnification; (c) size distribution of AgNPs; (d) UV-vis spectra of AgNPs and AgNPs@PMMA solution.

    图 3  (a)−(e)不同浓度的银纳米颗粒PMMA丙酮溶液制备的AgNPs@PMMA/P-Si基底的SEM图 (a) 0.55 g/mL; (b) 0.65 g/mL; (c) 0.75 g/mL; (d) 0.85 g/mL; (e) 0.95 g/mL

    Fig. 3.  (a)−(e) SEM images of AgNPs@PMMA/ P-Si substrates with different concentrations of AgNPs in PMMA acetone solution: (a) 0.55 g/mL; (b) 0.65 g/mL; (c) 0.75 g/mL; (d) 0.85 g/mL; (e) 0.95 g/mL

    图 4  (a) 10–7 mol/L浓度的R6G分子在不同浓度AgNPs@PMMA/P-Si基底上的SERS光谱; (b) 对应(a)图中的R6G分子在614 cm–1和774 cm–1处的拉曼峰强

    Fig. 4.  (a) SERS spectra of R6G (10–7 mol/L) on the AgNPs@PMMA/P-Si substrates fabricated with different concentrations; (b) corresponding to the Raman peak at 614 and 774 cm–1 for the R6G molecule in Fig. (a).

    图 5  (a) 10–10−10–14 mol/L的R6G分子吸附在银颗粒浓度为0.75 g/mL的AgNPs@PMMA/P-Si基底上的SERS光谱; (b) 吸附在AgNPs@PMMA/P-Si基底上的R6G分子在614和1365 cm–1处的拉曼峰强度与浓度的关系; (c) SERS基底的拉曼检测示意图; (d) R6G分子在三维复合SERS基底上的探测极限(10–13 mol/L)和的平面Si基底上的探测极限(10–4 mol/L)光谱的对比

    Fig. 5.  (a) SERS spectra of R6G with concentrations from 10–10 to 10–14 mol/L on the AgNPs@PMMA/P-Si with AgNPs concentration of 0.75 g/mL substrate; (b) the intensity of R6G peak at 614 cm–1 and 1365 cm–1 changes as a function of R6G molecule concentration on the AgNPs@PMMA/P-Si substrates; (c) schematic illustration showing the Raman detection of SERS substrates; (d) comparison of the detection limit of the R6 G molecule on the 3D composite SERS substrate (10–13 mol/L) and the detection limit (10–4 mol/L) on the planar Si substrate.

    图 6  (a) 0.75 g/mL浓度的AgNPs@ PMMA/P-Si基底塔基位置处10个随机位置R6G分子(10–7 mol/L)的平均SERS谱(红线为10条SERS谱线的平均值); (b) 相应(a)图中614 cm–1处拉曼峰强度变化统计图

    Fig. 6.  (a) Average SERS spectrum of the 10–7 mol/L R6G molecules from 10 random positions in the base tower of AgNPs@ PMMA/P-Si with concentration of 0.75 g/mL substrate (red line is the average of 10 SERS spectrum lines); (b) statistical diagram of variation of Raman peak intensity at 614 cm–1 is in the corresponding Fig. (a).

    图 7  (a) 10–7 mol/L的R6G分子分别吸附在AgNPs@PMMA/P-Si, AgNPs@PMMA/F-Si和AgNPs/P-Si基底上的拉曼光谱; (b)在18 d时间内每隔3 d分别在AgNPs@PMMA/P-Si和AgNPs/PMMA/F-Si基底上所采集到的10–7 mol/L的R6G分子614 cm–1峰处的拉曼强度

    Fig. 7.  (a) The Raman spectra of R6G molecule with 10–7 mol/L on the AgNPs@PMMA/P-Si, AgNPs@PMMA/F-Si, and AgNPs/P-Si substrates; (b) the intensity of the signal at 614 cm–1 of R6G (10–7 mol/L) collected with 18 days every three days respectively on the AgNPs@PMMA/P-Si and AgNPs/PMMA/F-Si substrate.

  • [1]

    Fleischmann M, Hendra P J, Mcquillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [2]

    Guerrini L, Krpetić Ž, van Lierop D, Alvarez Puebla A R, Graham D 2015 Angew. Chem. Int. Edit. 54 1144Google Scholar

    [3]

    Kubackova J, Fabriciova G, Miskovsky P, Jancura D, Sanchez-Cortes S 2015 Anal. Chem. 87 663Google Scholar

    [4]

    Zhang C, Li C, Yu J, Jiang S, Xu S, Yang C, Liu Y J, Gao X, Liu A, Man B 2018 Sensor. Actuat. B Chem. 258 163Google Scholar

    [5]

    Sotiriou G A, Blattmann C O, Deligiannakis Y 2015 Nanoscale 8 796

    [6]

    Fortuni B, Inose T, Uezono S, Toyouchi S, Umemoto K, Sekine S, Fujita Y, Ricci M, Lu G, Masuhara A, Hutchison JA, Latterini L, Uji I H 2017 Chem. Commun. 53 11298Google Scholar

    [7]

    冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林 2019 物理学报 68 147801Google Scholar

    Feng S L, Wang J Y, Chen S, Meng L Y, Shen S X, Yang Z L 2019 Acta Phys. Sin. 68 147801Google Scholar

    [8]

    Fan C, Zhu S, Xin H, Tian Y, Liang E 2017 J. Optics-UK 19 015401Google Scholar

    [9]

    张娜 2015 硕士学位论文 (苏州: 苏州大学)

    Zhang N 2015 M. S. Thesis (Suzhou: Soochow University) (in Chinese)

    [10]

    张星, 郝艳玲, 方炎 2013 光散射学报 2 5Google Scholar

    Zhang X, Hao Y L, Fang Y 2013 The Journal of Light Scattering 2 5Google Scholar

    [11]

    Xu S, Jiang S, Wang J, Wei J, Yue W, Ma Y 2016 Sens. Actuators, B 222 1175

    [12]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [13]

    Xu S, Tang W, Chase D B, Sparkset D L, Raboit J 2018 ACS Appl. Nano Mater. 1 1257

    [14]

    Xu W, Xiao J, Chen Y, Chen Y, Ling X, Zhang J 2013 Adv. Mater. 25 928Google Scholar

    [15]

    Sivashanmugan K, Liao J D, Liu B H, Yao C K 2013 Anal. Chim. Acta 800 56Google Scholar

    [16]

    Park S, Lee J, Ko H 2017 ACS Appl. Mater. Interfaces 9 44088Google Scholar

    [17]

    Yang C, Chen Y, Liu D, Chen C, Wang J, Fan Y, Huang S, Lei W 2018 ACS Appl. Mater. Interfaces 10 8317

    [18]

    Tang H, Meng G, Huang Q, Zhang Z, Huang Z, Zhu C 2012 Adv. Funct. Mater. 22 218Google Scholar

    [19]

    Li X, Chen G, Yang L, Zhen J, Liu J 2010 Adv. Funct. Mater. 20 2815Google Scholar

    [20]

    Lee S, Hahm M G, Vajtai R, Hashim D P, Thurakitseree T, Chipara A C, Ajayan P M, Hafneret J H 2012 Adv. Mater. 24 5261Google Scholar

    [21]

    黄晨玥 2016 硕士学位论文 (南京: 东南大学)

    Huang C Y 2016 M.S. Thesis (Nanjin: Southeast University) (in Chinese)

    [22]

    Yuan Z, Zhao S, Zhang L, Yu L, Li X, Lu Y 2017 RSC Adv. 7 11904Google Scholar

    [23]

    Smyth C A, Mirza I, Lunney J G, McCabe E M 2013 Appl. Surf. Sci. 264 31Google Scholar

    [24]

    Wang K, Sun D W, Pu H, Wei Q, Huang L 2019 ACS Appl. Mater. Interfaces 11 29177Google Scholar

    [25]

    Wang X, Bai X, Pang Z, Zhu J, Wu Y, Yang H, Qi Y, Wen X 2019 Opt. Mater. Express 9 1872Google Scholar

    [26]

    Gaballah S T, El-Nazer H A, Abdel-Monem R A, El-Liethy M A, Hemdan B A, Rabie S 2019 Int. J. Biol. Macromol. 121 707Google Scholar

    [27]

    Zhong L B, Yin J, Zheng Y M, Liu Q, Cheng X X, Luo F H 2014 Anal. Chem. 86 6262Google Scholar

    [28]

    Shiohara A, Langer J, Polavarapu L, Lizmarzán L M 2014 Nanoscale 6 9817Google Scholar

    [29]

    卢思辰, 高宇坤, 杨楠, 张晨萌, 尤汀汀, 殷鹏刚 2018 光谱学与光谱分析 38 176

    Lu S C, Gao Y K, Yang N, Zhang C M, You T T, Yin P G 2018 Spectroscopy and Spectral Analysis 38 176

    [30]

    Li C, Yu J, Xu S, Jiang S, Xiu X, Chen C, Liu A, Wu T, Man B, Zhang C 2018 Adv. Mater. Technol. 3 1800174Google Scholar

    [31]

    Yao G, Zhang H, Zhang S, Liao F, Huang Z, Bie B, Lin Y 2017 RSC Adv. 7 27281Google Scholar

    [32]

    Zhang X Y, Hu A, Zhang T, Xue X J, Wen J Z, Duley W W 2010 Appl. Phys. Lett. 96 043109Google Scholar

    [33]

    Peng B, Li Z, Mutlugun E, Hernández Martínez P L, Li D, Zhang Q, Gao Y, Demir H V, Xiong Q 2014 Nanoscale 6 5592Google Scholar

    [34]

    Jin L, She G, Wang X, Mu L, Shi W 2014 Appl. Surf. Sci. 320 591Google Scholar

    [35]

    Natan M J 2006 Faraday Discuss 132 321Google Scholar

  • [1] 郑林启, 时术华, 李金泽, 王子宇, 李爽. 高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究. 物理学报, 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [2] 刘文英, 王公堂, 段鹏怡, 张文杰, 张灿, 胡晓璇, 刘玫. F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响. 物理学报, 2023, 72(3): 037402. doi: 10.7498/aps.72.20221958
    [3] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. 聚甲基丙烯酸甲酯的冲击破碎扩散特性. 物理学报, 2022, 71(21): 216201. doi: 10.7498/aps.71.20220740
    [4] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [5] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用. 物理学报, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [6] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [7] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [8] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [9] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [11] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [12] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [13] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [14] 韩涛, 孟凡英, 张松, 汪建强, 程雪梅. 银纳米颗粒减反射特性的理论研究. 物理学报, 2011, 60(2): 027303. doi: 10.7498/aps.60.027303
    [15] 周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚. 聚甲基丙烯酸甲酯/镓纳米复合物的动力学弛豫行为. 物理学报, 2011, 60(3): 036102. doi: 10.7498/aps.60.036102
    [16] 李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛. 一种可控纳米柱阵列的研制. 物理学报, 2010, 59(8): 5851-5856. doi: 10.7498/aps.59.5851
    [17] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [18] 樊荣伟, 夏元钦, 李晓晖, 姜玉刚, 陈德应. 宽带输出PM580掺杂聚甲基丙烯酸甲酯固体染料激光器研究. 物理学报, 2008, 57(9): 5705-5708. doi: 10.7498/aps.57.5705
    [19] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [20] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性. 物理学报, 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
计量
  • 文章访问数:  8298
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2019-11-28
  • 刊出日期:  2020-03-05

/

返回文章
返回