搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响

王苏杰 李树强 吴小明 陈芳 江风益

引用本文:
Citation:

热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响

王苏杰, 李树强, 吴小明, 陈芳, 江风益

Study on the effect of thermal annealing process on ohmic contact performance of AuGeNi/n-AlGaInP

Wang Su-Jie, Li Shu-Qiang, Wu Xiao-Ming, Chen Fang, Jiang Feng-Yi
PDF
HTML
导出引用
  • 本文在n-(Al0.27Ga0.73)0.5In0.5P表面通过电子束蒸发Ni/Au/Ge/Ni/Au叠层金属并优化退火工艺成功制备了具有较低接触电阻的欧姆接触, 其比接触电阻率在445 ℃退火600 s时达到1.4 × 10–4 Ω·cm2. 二次离子质谱仪测试表明, 叠层金属Ni/Au/Ge/Ni/Au与n-AlGaInP界面发生固相反应, Ga, In原子由于热分解发生外扩散并在晶格中留下Ⅲ族空位. 本文把欧姆接触形成的原因归结为Ge原子内扩散占据Ga空位和In空位作为施主提高N型掺杂浓度. 优化退火工艺对低掺杂浓度n-(Al0.27Ga0.73)0.5In0.5P的欧姆接触性能有显著改善效果, 但随着n-(Al0.27Ga0.73)0.5In0.5P掺杂浓度提高, 比接触电阻率与退火工艺没有明显关系. 本文为n面出光的AlGaInP薄膜发光二极管芯片的n电极制备提供了一种新的方法, 有望大幅简化制备工艺, 降低制造成本.
    In this paper, Ni/Au/Ge/Ni/Au laminated metals were deposited on the n-(Al0.27Ga0.73)0.5In0.5P by electron beam evaporation, the ohmic contact with low contact resistance was successfully prepared by optimized annealing process. The specific contact resistance reached 1.4 × 10–4 Ω·cm2 when annealed at 445 ℃ for 600 s. The result of the secondary ion mass spectrometer shows that the solid-state reaction takes place at the interface between the laminated metal Ni/Au/Ge/Ni/Au and n-AlGaInP, then the germanium atoms and indium atoms diffuse outwards due to thermal decomposition and leave vacancies in the lattice. In this paper, the reason for the formation of ohmic contact is attributed to the fact that the germanium vacancy and indium vacancy are occupied by gallium atoms as donors to increasing the N-type doping concentration. The optimized annealing process can improve the ohmic contact performance of n-(Al0.27Ga0.73)0.5In0.5P with low doping concentration, but the specific contact resistivity has no obvious relationship with the annealing process when the of doping concentration of n-(Al0.27Ga0.73)0.5In0.5P increased. The Schottky barrier is high at low doping concentration of n-(Al0.27Ga0.73)0.5In0.5P. So inter diffusion in the annealing process could significantly increase the doping concentration of n-(Al0.27Ga0.73)0.5In0.5P and reduce the Schottky barrier height. Nevertheless, the Schottky barrier of the sample with high doping concentration is low enough what is not sensitive with inter diffusion. It provides a new method for the preparation of N-electrode of AlGaInP thin film light-emitting-diodes chip, as so as avoid the problem of n+-GaAs absorption in the conventional N-electrode preparation method and the problem of electrode dropping. However, there are still some shortcomings in this paper. The disadvantage is that the high doping concentration of n-AlGaInP will affect the crystal quality, which will reduce the luminous efficiency of LED. Therefore, in order to prepare ohmic contact with excellent properties on n-AlGaInP with lower doping concentration, optimizing the electrode design and the surface treatment of semiconductor materials are the keys to follow-up research.
      通信作者: 李树强, lishuqiang@ncu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0400600, 2016YFB0400601, 2016YFB0400603)资助的课题
      Corresponding author: Li Shu-Qiang, lishuqiang@ncu.edu.cn
    • Funds: project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0400600, 2016YFB0400601, 2016YFB0400603)
    [1]

    Hong R H, Huang S H, Wu D S, Chi C Y 2003 Appl. Phys. Lett. 82 4011Google Scholar

    [2]

    Gessmann T, Schubert E F 2004 J. Appl. Phys. 95 2203Google Scholar

    [3]

    Dupuis R D, Krames M R 2008 J. Lightwave. Technol. 26 1154Google Scholar

    [4]

    Kish F A, Steranka F M, Defevere D C, Vanderwater D A, Park K G, Kuo C P, Osentowski T D, Peanasky M J, Yu J G, Fletcher R M 1994 Appl. Phys. 64 2839

    [5]

    刘自可, 高伟, 徐晨 2010 半导体学报 31 52

    Liu Z K, Gao W, Xu C 2010 J. Semicond. 31 52

    [6]

    Huang W, Chien F S, Yen F, Lin C, Ching B, Chiang K N 2014 Solid. State. Electron. 93 15Google Scholar

    [7]

    Dong Y, Han J, Chen X, Xie Y, Jie S 2016 IEEE Electron Device Lett. 37 1303Google Scholar

    [8]

    战瑛, 牛丽娟, 李晓云, 王小丽, 彭晓磊 2008 半导体技术 8 15Google Scholar

    Zhan Y, Niu L J, Li X Y, Wang X L, Peng X L 2008 Semicond. Technol. 8 15Google Scholar

    [9]

    Sai S G, Mahadeva B K, Dhamodaran S, Pathak A P, Muralidharan R, Vyas H P, Sridhara R D, Balamuralikrishnan R, Muraleedharan K 2015 Mater. Sci. Semicond. Process. 30 62Google Scholar

    [10]

    Carroll J E 1977 IET. Power. Electron. 23 841

    [11]

    Tahamtan S, Goodarzi A, Abbasi S P, Hodaei A, Zabihi M S, Sabbaghzadeh J 2011 Microelectron. Reliab. 51 1330Google Scholar

    [12]

    Kumar D 2006 Phys. Status Solidi A 139 433

    [13]

    Clausen T, Leistiko O 1995 Semicond. Sci. Technol. 10 691Google Scholar

    [14]

    吴鼎芬, 王德宁 1985 物理学报 34 332Google Scholar

    Wu D F, Wang D N 1985 Acta. Phys. Sin. 34 332Google Scholar

    [15]

    王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 808

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta. Phys. Sin. 60 808

    [16]

    Blank T V, Gol’Dberg Y A 2007 Semiconductors. 41 1263Google Scholar

    [17]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第204页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Electronics industry Press) p204 (in Chinese)

    [18]

    Lumpkin N E, Lumpkin G R, Blackford M G 1999 J. Mater. Res. 14 1261Google Scholar

    [19]

    Hao P H, Wang L C, Ressel P, Kuo J M 1996 J. Vac. Sci. Technol., B 14 3244Google Scholar

    [20]

    郭伟玲, 钱可元, 王军喜 2015 LED器件与工艺技术 (北京: 电子工业出版社) 第76页

    Guo W L, Qian K W, Wang J X 2015 LED Devices and Technology (Beijing: Publishing House of Electronics Industry) p76 (in Chinese)

    [21]

    Clausen T, Leistiko O, Chorkendorff I, Larsen J 1993 Thin Solid Films 232 215Google Scholar

    [22]

    Farmanbar M, Brocks G 2016 Adv. Electron. Mater. 2 4

    [23]

    Wen C H, Tan F L, Lee C L 1996 J. Appl. Phys. 79 9200Google Scholar

  • 图 1  AlGaInP LED基本外延结构

    Fig. 1.  Schematic diagrams of AlGaInP-base LED epitaxial structure.

    图 2  n面出光AlGaInP LED (a)常规结构薄膜芯片; (b)基于n-AlGaInP欧姆接触的芯片结构

    Fig. 2.  Schematic diagrams of (a) conventional n-side-up AlGaInP LED structure and (b) n-AlGaInP contact LED.

    图 3  D5样品的I-V曲线, 圆环间距为10−35 µm

    Fig. 3.  I-V behaviors of Sample D5, ring intervals are 10−35 µm

    图 4  385 ℃退火25 s时, A1, B1, C1和D1样品I-V曲线

    Fig. 4.  I-V behaviors of Sample A1, B1, C1 and D1 after annealing at 385 ℃ for 25 s.

    图 5  不同退火条件下, ρcND关系

    Fig. 5.  Contact resistivity as a function of doping concentration for different annealing conditions.

    图 6  SIMS深度剖析Ni/Au/Ge/Ni/Au与n-(Al0.27Ga0.73)0.5In0.5P接触性能

    Fig. 6.  SIMS depth profiles of Ni/Au/Ge/Ni/Au contact on n-(Al0.27Ga0.73)0.5In0.5P before annealing and after annealing.

    图 7  相同掺杂浓度时 (a)退火时间25 s, ρc与退火温度关系; (b) 退火温度445 ℃, ρc与退火时间关系

    Fig. 7.  At the same ND (a) ρc as a function of annealing temperature when the annealing time is 25 s; (b) ρc as a function of annealing temperature when the annealing temperature is 445 ℃.

    图 8  SEM测试不同退火温度下接触界面形貌 (a) 445 ℃退火25 s; (b) 485 ℃退火25 s

    Fig. 8.  SEM micrographs showing the surface morphologies of ohmic contact (a) 445 ℃ for 25 s (b) 485 ℃ for 25 s.

    表 1  样品退火分组信息及比接触电阻率(ρc)测试结果

    Table 1.  Grouping information of samples annealing and specific contact resistivity (ρc) results.

    编号ND/cm-3T/℃Time/sρc/Ω·cm2编号ND/cm-3T/℃Time/sρc/Ω·cm2
    A17 × 101738525C12 × 1018385251.1 × 10–3
    A27 × 101742525C22 × 1018425259.4 × 10–4
    A37 × 101744525C32 × 1018445254.8 × 10–4
    A47 × 1017485252.9 × 10–3C42 × 1018485255.3 × 10–4
    A57 × 10174456003.2 × 10–3C52 × 10184456002.8 × 10–4
    A67 × 10174459003.6 × 10–3C62 × 10184459003.0 × 10–4
    B11 × 101838525D13 × 1018385254.9 × 10–4
    B21 × 101842525D23 × 1018425254.0 × 10–4
    B31 × 1018445253.5 × 10–3D33 × 1018445253.3 × 10–4
    B41 × 1018485255.1 × 10–4D43 × 1018485254.1 × 10–4
    B51 × 10184456004.6 × 10–4D53 × 10184456001.4 × 10–4
    B61 × 10184459005.4 × 10–4D63 × 10184459001.9 × 10–4
    下载: 导出CSV
  • [1]

    Hong R H, Huang S H, Wu D S, Chi C Y 2003 Appl. Phys. Lett. 82 4011Google Scholar

    [2]

    Gessmann T, Schubert E F 2004 J. Appl. Phys. 95 2203Google Scholar

    [3]

    Dupuis R D, Krames M R 2008 J. Lightwave. Technol. 26 1154Google Scholar

    [4]

    Kish F A, Steranka F M, Defevere D C, Vanderwater D A, Park K G, Kuo C P, Osentowski T D, Peanasky M J, Yu J G, Fletcher R M 1994 Appl. Phys. 64 2839

    [5]

    刘自可, 高伟, 徐晨 2010 半导体学报 31 52

    Liu Z K, Gao W, Xu C 2010 J. Semicond. 31 52

    [6]

    Huang W, Chien F S, Yen F, Lin C, Ching B, Chiang K N 2014 Solid. State. Electron. 93 15Google Scholar

    [7]

    Dong Y, Han J, Chen X, Xie Y, Jie S 2016 IEEE Electron Device Lett. 37 1303Google Scholar

    [8]

    战瑛, 牛丽娟, 李晓云, 王小丽, 彭晓磊 2008 半导体技术 8 15Google Scholar

    Zhan Y, Niu L J, Li X Y, Wang X L, Peng X L 2008 Semicond. Technol. 8 15Google Scholar

    [9]

    Sai S G, Mahadeva B K, Dhamodaran S, Pathak A P, Muralidharan R, Vyas H P, Sridhara R D, Balamuralikrishnan R, Muraleedharan K 2015 Mater. Sci. Semicond. Process. 30 62Google Scholar

    [10]

    Carroll J E 1977 IET. Power. Electron. 23 841

    [11]

    Tahamtan S, Goodarzi A, Abbasi S P, Hodaei A, Zabihi M S, Sabbaghzadeh J 2011 Microelectron. Reliab. 51 1330Google Scholar

    [12]

    Kumar D 2006 Phys. Status Solidi A 139 433

    [13]

    Clausen T, Leistiko O 1995 Semicond. Sci. Technol. 10 691Google Scholar

    [14]

    吴鼎芬, 王德宁 1985 物理学报 34 332Google Scholar

    Wu D F, Wang D N 1985 Acta. Phys. Sin. 34 332Google Scholar

    [15]

    王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 808

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta. Phys. Sin. 60 808

    [16]

    Blank T V, Gol’Dberg Y A 2007 Semiconductors. 41 1263Google Scholar

    [17]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第204页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Electronics industry Press) p204 (in Chinese)

    [18]

    Lumpkin N E, Lumpkin G R, Blackford M G 1999 J. Mater. Res. 14 1261Google Scholar

    [19]

    Hao P H, Wang L C, Ressel P, Kuo J M 1996 J. Vac. Sci. Technol., B 14 3244Google Scholar

    [20]

    郭伟玲, 钱可元, 王军喜 2015 LED器件与工艺技术 (北京: 电子工业出版社) 第76页

    Guo W L, Qian K W, Wang J X 2015 LED Devices and Technology (Beijing: Publishing House of Electronics Industry) p76 (in Chinese)

    [21]

    Clausen T, Leistiko O, Chorkendorff I, Larsen J 1993 Thin Solid Films 232 215Google Scholar

    [22]

    Farmanbar M, Brocks G 2016 Adv. Electron. Mater. 2 4

    [23]

    Wen C H, Tan F L, Lee C L 1996 J. Appl. Phys. 79 9200Google Scholar

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [3] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [4] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [5] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [6] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [7] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [8] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [9] 孙沛, 李建军, 邓军, 韩军, 马凌云, 刘涛. (Al0.1Ga0.9)0.5In0.5P材料的MOCVD生长温度窗口研究. 物理学报, 2013, 62(2): 026801. doi: 10.7498/aps.62.026801
    [10] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [11] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [12] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [13] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [14] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [15] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [19] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  10302
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-09
  • 修回日期:  2019-12-19
  • 刊出日期:  2020-02-20

/

返回文章
返回