搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ar原子序列双光双电离产生光电子角分布的理论计算

马堃 颉录有 董晨钟

引用本文:
Citation:

Ar原子序列双光双电离产生光电子角分布的理论计算

马堃, 颉录有, 董晨钟

Theoretical calculations on photoelectron angular distribution of sequential two-photon double ionization for Ar atom

Ma Kun, Xie Lu-You, Dong Chen-Zhong
PDF
HTML
导出引用
  • 基于多组态Dirc-Fock方法和密度矩阵理论, 给出了原子序列双光双电离光电子角分布的计算表达式, 发展了相应的计算程序. 利用该程序对Ar原子3p壳层序列双光双电离过程进行了理论研究, 给出了光电离的总截面、磁截面、剩余离子取向以及光电子角分布的各向异性参数与入射光子能量的函数关系. 结果显示在光电离截面的Cooper极小位置附近取向参数出现极大值, 而光电子角分布的各向异性参数在该位置附近出现极小值. 进一步给出了33.94和55.34 eV光子能量下序列双光双电离过程中第一步的Ar原子和第二步的Ar+离子3p壳层光电子角分布, 分析了序列双光双电离光电子角分布与单光电离光电子角分布的差异. 将计算结果与文献已有的数据进行了比较, 具有很好的一致性. 本文的研究结果对揭示光与物质相互作用的非线性动力学机制具有重要的参考价值.
    With the development of the intense light source, such as free electron lasers, the experiments on the nonlinear process in atomic photo absorption in the XUV and X-ray region became more and more feasible. As one of the simplest possible nonlinear processes, the sequential two-photon double ionization, in which the first photon produces an ion which is subsequently ionized by the second photon, attracts increasing attention of theorists and experimentalists. Study on the angular distributions and angular correlations of the photoelectrons in the sequential two-photon double ionization process are especially attractive, which provides valuable information about the electronic structure of atom or molecule systems and allows the obtaining of additional information about mechanism and pathway of the two-photon double ionization. In this paper, the expression for the photoelectron angular distribution in a sequential two-photon process is given based on the multi-configuration Dirac-Fock method and the density matrix theory. And then, the relativistic calculation program for photoelectron angular distribution is further developed with the help of the program packages GRASP2K and RATIP which are based on the multi-configuration Dirac-Fock method. By using this code, the sequential two-photon double ionization of the 3p shell in atomic argon is studied theoretically. The cross section, magnetic cross section, alignment of residual ions and the asymmetry parameter of the photoelectron angular distribution, each as a function of photon energy, for the first and the second step of sequential two-photon double ionization of argon are presented. The calculations predict that the alignment has a maximum value and the asymmetry parameter has a minimum value in the region of the cooper minimum. The angular distribution of the first step ionization for Ar atom and the second step ionization for Ar+ ion are given at 33.94 eV and 55.34 eV photon energy, respectively. In addition, the difference in property between the angular distributions of the first photoelectron in sequential two-photon double ionization and in conventional one-photon single ionization is discussed. The present calculated results are compared with other available results, showing that they are in good agreement with each other. The results of this paper will be helpful in studying nonlinear processes in the XUV range.
      通信作者: 马堃, makun0602@163.com
    • 基金项目: 国家级-国家自然科学基金(11804112)
      Corresponding author: Ma Kun, makun0602@163.com
    [1]

    Bachau H, Lambropoulos P 1991 Phys. Rev. A 44 R9(R)

    [2]

    Laulan S, Bachau H 2003 Phys. Rev. A 68 013409Google Scholar

    [3]

    Böhme D K 2011 Phys. Chem. Chem. Phys. 13 18253Google Scholar

    [4]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [5]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys. Conf. Ser. 58 451Google Scholar

    [6]

    McNeil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar

    [7]

    Wabnitz H, Bittner L, de Castro A R B, et al. 2002 Nature 420 482Google Scholar

    [8]

    Young L, Kanter E P, Krässig B, et al. 2010 Nature 466 56Google Scholar

    [9]

    Braune M, Reinköster A, Viefhaus J, et al. 2007 XXV Int. Conf. on Photonic, Electronic and Atomic Collisions (ICPEAC), Freiburg, Germany, July 25–31, 2007 p34

    [10]

    Kurka M, Rudenko A, Foucar, et al. 2009 J. Phys. B: At. Mol. Opt. Phys. 42 141002Google Scholar

    [11]

    Braune M, Hartmann G, Ilchen M, et al. 2016 J. Mod. Opt. 63 324Google Scholar

    [12]

    Augustin S, Schulz M, Schmid G, et al. 2018 Phys. Rev. A 98 033408Google Scholar

    [13]

    Ilchen M, Hartmann G, Gryzlova E V, et al. 2018 Nat. Commun. 9 4659Google Scholar

    [14]

    Carpeggiani P A, Gryzlova E V, Reduzzi M, et al. 2019 Nat. Phys. 15 170Google Scholar

    [15]

    Fritzsche S, Grum-Grzhimailo A N, Gryzlova E V, Kabachnik N M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 165601Google Scholar

    [16]

    Gryzlova E V, Grum-GrzhimailoA N, Kuzmina E I, Strakhova S I 2014 J. Phys. B: At. Mol. Opt. Phys. 47 195601Google Scholar

    [17]

    Grum-Grzhimailo A N, Gryzlova E V 2014 Phys. Rev. A 89 043424Google Scholar

    [18]

    Grum-Grzhimailo A N, Gryzlova E V, Fritzsche S, Kabachnik N M 2016 J. Mod. Opt. 63 334Google Scholar

    [19]

    Gryzlova E V, Grum-Grzhimailo A N, Staroselskaya E I, Strakhova S I 2015 J. Electron Spectrosc. Relat. Phenom. 204 277Google Scholar

    [20]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402Google Scholar

    [21]

    Ma K, Chen Z B, Xie L Y, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045203Google Scholar

    [22]

    Ma K, Chen Z B, Xie L Y, Dong C Z, Qu Y Z 2017 J. Phys. B: At. Mol. Opt. Phys. 50 225202Google Scholar

    [23]

    Ma K, Chen Z B, Xie L Y, Ding X B, Zhang D H, Dong C Z 2018 J. Electron Spectrosc. Relat. Phenom. 228 1Google Scholar

    [24]

    Blum K 1996 Density Matrix Theory and Applications (2nd Ed.) (New York: Plenum) pp35–60

    [25]

    Balashov V V, Grum-Grzhimailo A N, Kabachnik N M 2000 Polarization and Correlation Phenomena in Atomic Collisions (New York: Kluwer Academic/Plenum) pp76–97

    [26]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [27]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525Google Scholar

    [28]

    Langer B 1992 ZurEnergieabhängigkeit von Photoelektronen- satelliten (Studies of Vacuum Ultraviolet and X-ray Processes (Vol. 2) (New York: AMS Press) p145

  • 图 1  Ar原子序列双光双电离截面

    Fig. 1.  The cross section of the sequential two-photon double ionization in argon atom.

    图 2  Ar原子3p3/2光电离磁截面

    Fig. 2.  The magnetic cross section of the 3p3/2 photoionization in argon atom.

    图 3  Ar原子3p3/2光电离后剩余离子取向参数

    Fig. 3.  The alignment of the residual ions of 3p3/2 photoioni-zation in argon atom.

    图 4  Ar原子3p壳层序列双光双电离中第一个(a)和第二个(b)光电子的角各向异性参数

    Fig. 4.  The asymmetry parameter of the first (a) and second (b) photoelectron angular distribution in sequential two-photon double ionization of the Ar 3p shell.

    图 5  Ar原子3p壳层序列双光双电离第一个(a), (b)和第二个(c), (d)光电子角各向异性参数

    Fig. 5.  The asymmetry parameter of the angular distribution of the first (a), (b) and second (c), (d) photoelectrons emitted in sequential two-photon double ionization of the Ar 3p shell.

    图 6  Ar原子3p壳层序列双光双电离光电离角分布

    Fig. 6.  Photoelectron angular distributions for the sequential two-photon double ionization of Ar 3p shell.

  • [1]

    Bachau H, Lambropoulos P 1991 Phys. Rev. A 44 R9(R)

    [2]

    Laulan S, Bachau H 2003 Phys. Rev. A 68 013409Google Scholar

    [3]

    Böhme D K 2011 Phys. Chem. Chem. Phys. 13 18253Google Scholar

    [4]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [5]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys. Conf. Ser. 58 451Google Scholar

    [6]

    McNeil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar

    [7]

    Wabnitz H, Bittner L, de Castro A R B, et al. 2002 Nature 420 482Google Scholar

    [8]

    Young L, Kanter E P, Krässig B, et al. 2010 Nature 466 56Google Scholar

    [9]

    Braune M, Reinköster A, Viefhaus J, et al. 2007 XXV Int. Conf. on Photonic, Electronic and Atomic Collisions (ICPEAC), Freiburg, Germany, July 25–31, 2007 p34

    [10]

    Kurka M, Rudenko A, Foucar, et al. 2009 J. Phys. B: At. Mol. Opt. Phys. 42 141002Google Scholar

    [11]

    Braune M, Hartmann G, Ilchen M, et al. 2016 J. Mod. Opt. 63 324Google Scholar

    [12]

    Augustin S, Schulz M, Schmid G, et al. 2018 Phys. Rev. A 98 033408Google Scholar

    [13]

    Ilchen M, Hartmann G, Gryzlova E V, et al. 2018 Nat. Commun. 9 4659Google Scholar

    [14]

    Carpeggiani P A, Gryzlova E V, Reduzzi M, et al. 2019 Nat. Phys. 15 170Google Scholar

    [15]

    Fritzsche S, Grum-Grzhimailo A N, Gryzlova E V, Kabachnik N M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 165601Google Scholar

    [16]

    Gryzlova E V, Grum-GrzhimailoA N, Kuzmina E I, Strakhova S I 2014 J. Phys. B: At. Mol. Opt. Phys. 47 195601Google Scholar

    [17]

    Grum-Grzhimailo A N, Gryzlova E V 2014 Phys. Rev. A 89 043424Google Scholar

    [18]

    Grum-Grzhimailo A N, Gryzlova E V, Fritzsche S, Kabachnik N M 2016 J. Mod. Opt. 63 334Google Scholar

    [19]

    Gryzlova E V, Grum-Grzhimailo A N, Staroselskaya E I, Strakhova S I 2015 J. Electron Spectrosc. Relat. Phenom. 204 277Google Scholar

    [20]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402Google Scholar

    [21]

    Ma K, Chen Z B, Xie L Y, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045203Google Scholar

    [22]

    Ma K, Chen Z B, Xie L Y, Dong C Z, Qu Y Z 2017 J. Phys. B: At. Mol. Opt. Phys. 50 225202Google Scholar

    [23]

    Ma K, Chen Z B, Xie L Y, Ding X B, Zhang D H, Dong C Z 2018 J. Electron Spectrosc. Relat. Phenom. 228 1Google Scholar

    [24]

    Blum K 1996 Density Matrix Theory and Applications (2nd Ed.) (New York: Plenum) pp35–60

    [25]

    Balashov V V, Grum-Grzhimailo A N, Kabachnik N M 2000 Polarization and Correlation Phenomena in Atomic Collisions (New York: Kluwer Academic/Plenum) pp76–97

    [26]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [27]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525Google Scholar

    [28]

    Langer B 1992 ZurEnergieabhängigkeit von Photoelektronen- satelliten (Studies of Vacuum Ultraviolet and X-ray Processes (Vol. 2) (New York: AMS Press) p145

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231583
    [2] 廖健颖, 贺佟佟, 苏杰, 刘子超, 李盈傧, 余本海, 黄诚. 椭偏激光场中原子次序双电离的离子动量分布. 物理学报, 2023, 72(19): 193202. doi: 10.7498/aps.72.20230683
    [3] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [4] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用. 物理学报, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [5] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [6] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [7] 马堃, 颉录有, 张登红, 蒋军, 董晨钟. 类钠离子光电子角分布的非偶极效应. 物理学报, 2017, 66(4): 043201. doi: 10.7498/aps.66.043201
    [8] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算. 物理学报, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [9] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构. 物理学报, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [10] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [11] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [12] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [13] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [14] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [15] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [16] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究. 物理学报, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [17] 李 涵, 唐新峰, 赵文俞, 张清杰. 双原子填充式skutterudite化合物的结构及X射线光电子能谱分析. 物理学报, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [18] 张穗萌, 吴兴举. H原子(e,2e)反应中电子角分布的理论研究. 物理学报, 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
    [19] 屈卫星, 徐至展, 张文琦. 二阶离化过程对双光子自电离光电子能谱的影响. 物理学报, 1991, 40(5): 686-692. doi: 10.7498/aps.40.686
    [20] 陈宝振. 氢原子阈上电离角分布. 物理学报, 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
计量
  • 文章访问数:  6934
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-29
  • 修回日期:  2020-01-02
  • 刊出日期:  2020-03-05

/

返回文章
返回