搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控

张芳 贾利群 孙现亭 戴宪起 黄奇祥 李伟

引用本文:
Citation:

电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控

张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟

Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field

Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei
PDF
HTML
导出引用
  • 半导体与金属接触是制作纳电子和光电子器件时非常重要的问题, 接触类型对器件的功能实现和性能影响很大. 为了制备高性能多功能化器件, 就必须对界面处的势垒高度和接触类型进行调控. 采用基于密度泛函理论的第一性原理计算研究了外电场作用下graphene/InSe范德瓦耳斯异质结的电子结构. 计算结果表明异质结中的graphene和InSe保留了各自的本征电子性质, 在界面处形成了欧姆接触. 外电场可以有效调控graphene/InSe异质结中的肖特基势垒, 不但可以调控肖特基势垒的高度, 而且可以调控界面接触类型. 外电场还可以有效调控graphene和InSe界面电荷转移的数量和方向.
    The contacts between semiconductor and metal are vital in the fabrication of nano electronic and optoelectronic devices. The contact type has a great influence on the function realization and performance of the device. In order to prepare multifunctional devices with high performance, it is necessary to modulate the barrier height and contact type at the interface. First-principles calculations based on the density functional theory (DFT) are implemented in the VASP package. The generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA-PBE) with van der Waals (vdW) correction proposed by Grimme (DFT-D3) is chosen due to its good description of long-range vdW interactions. It is demonstrated that weak vdW interactions dominate between graphene and InSe with their intrinsic electronic properties preserved. We find that the n-type ohmic contact is formed at the graphene/InSe interface with the Fermi level through the conduction band of InSe (ΦBn < 0). The Fermi level of graphene/InSe heterostructure moves down to below the Dirac point of graphene layer, which results in p-type (hole) doping in graphene. Moreover, the external electric field is effective to tune the Schottky barrier, which can control not only the Schottky barrier height but also the type of contact. With the negative external electric field varying from 0 to –1 V/nm, the conduction band minimum of InSe below the Fermi level declines gradually but the n-type ohmic contact is still preserved. Nevertheless, with the positive external electric field varying from 0 to 0.8 V/nm, the conduction band minimum of InSe shifts upward and across the Fermi level, the conduction band minimum of InSe is closer to the Fermi level than the valence band maximum, which indicates that the n-type Schottky contact is formed. The Fermi level moves from the the conduction band minimum to the valence band maximum of InSe when the positive external electric field increases from 0.8 V/nm to 2 V/nm. The n-type Schottky barrier height exceeds the p-type Schottky barrier height gradually, which demonstrates that the positive external electric field transforms the n-type Schottky contact into the p-type Schottky contact at the graphene/InSe interface. When the positive external electric field exceeds 2 V/nm, the valence band of InSe moves upward and cross the Fermi level (ΦBp < 0), the ohmic contact is obtained again. Meanwhile, p-type (hole) doping in graphene is enhanced under negative external electric field and a large positive external electric field is required to achieve n-type (electron) doping in graphene. The external electric field can control not only the amount of charge transfer but also the direction of charge transfer at the graphene/InSe interface.
      通信作者: 李伟, liwei19801210@126.com
    • 基金项目: 国家级-国家自然科学基金(61674053)
      Corresponding author: Li Wei, liwei19801210@126.com
    [1]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, et al. 2005 Nature 438 197Google Scholar

    [3]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Tang Q, Zhou Z 2013 Prog. Mater. Sci. 58 1244Google Scholar

    [5]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [6]

    Balog R, Jørgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315Google Scholar

    [7]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [8]

    Huang L, Huo N J, Li Y, Chen H, Yang J H, Wei Z M, Li J B, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [9]

    Kang J, Sahin H, Peeters F M 2015 J. Phys. Chem. C 119 9580Google Scholar

    [10]

    Yu J H, Lee H R, Hong S S, Kong D S, Lee H W, Wang H T, Xiong F, Wang S, Cui Y 2015 Nano Lett. 15 1031Google Scholar

    [11]

    Xiang Q J, Yu J G, Jaroniec M 2011 J. Phys. Chem. C 115 7355Google Scholar

    [12]

    Li X H, Chen J S, Wang X, Sun J, Antonietti M 2011 J. Am. Chem. Soc. 133 8074Google Scholar

    [13]

    Du A, Sanvito S, Li Z, et al. 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [14]

    Dean C R, Young A F, Meric I, et al. 2010 Nat. Nanotechnol. 5 722Google Scholar

    [15]

    Xue J, Sanchez-Yamagishi J, Bulmash D, et al. 2011 Nat. Mater. 10 282Google Scholar

    [16]

    Sławin′ska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433Google Scholar

    [17]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B, Chen H 2013 J. Mater. Chem. C 1 1618Google Scholar

    [18]

    Ma Y, Dai Y, Guo M, Niu C, Huang B 2011 Nanoscale 3 3883Google Scholar

    [19]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [20]

    Britnell L, Ribeiro R M, Eckmann A, et al. 2013 Science 340 1311Google Scholar

    [21]

    Tian H, Tan Z, Wu C, et al. 2014 Sci. Rep. 4 5951

    [22]

    Tung R 2014 Appl. Phys. Rev. 1 011304Google Scholar

    [23]

    Mudd G, Patane A, Kudrynskyi Z, et al. 2014 Appl. Phys. Lett. 105 221909Google Scholar

    [24]

    Wu M, Shi J, Zhang M, Ding Y, Wang H, Cen Y, Lu J 2018 Nanoscale 10 11441Google Scholar

    [25]

    Ho P H, Chang Y R, Chu Y C, Li M K, Tsai C A, Wang W H, Ho C H, Chen C W, Chiu P W 2017 ACS Nano 11 7362Google Scholar

    [26]

    Tamalampudi S, Lu Y, Kumar U, Sankar R, Liao C, Moorthy B, Cheng C, Chou F, Chen Y 2014 Nano Lett. 14 2800Google Scholar

    [27]

    Lei S, Ge L, Najmaei S, et al. 2014 ACS Nano 8 1263Google Scholar

    [28]

    Sun C, Xiang H, Xu B, Xia Y, Yin J, Liu Z 2016 Appl. Phys. Express 9 035203Google Scholar

    [29]

    Bandurin D A, Tyurnina A V, Yu G L, et al. 2017 Nat. Nanotechnol. 12 223Google Scholar

    [30]

    Feng W, Zheng W, Cao W, Hu P 2014 Adv. Mater. 26 6587Google Scholar

    [31]

    Padilha J E, Miwa R H, Silva A J R, Fazzio A 2017 Phys. Rev. B 95 195143Google Scholar

    [32]

    Yan F, Zhao L, Patane A, Hu P, Wei X, Luo W, Zhang D, Lv Q, Feng Q, Shen C, Chang K, Eaves L, Wang K 2017 Nanotechnology 28 27LT01Google Scholar

    [33]

    Mudd G W, Svatek S A, Hague L, et al. 2015 Adv. Mater. 27 3760Google Scholar

    [34]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [37]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [38]

    Singh S, Espejo C, Romero A 2018 Phys. Rev. B 98 155309Google Scholar

    [39]

    Woessner A, Lundeberg M B, Gao Y, et al. 2015 Nat. Mater. 14 421Google Scholar

    [40]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [41]

    Sun M, Chou J P, Yu J, Tang W 2017 J. Mater. Chem. C 5 10383Google Scholar

  • 图 1  (a) 本文计算得到的graphene/MoS2异质结的能带结构图; (b) 文献[38]计算得到的graphene/MoS2异质结的能带结构图

    Fig. 1.  (a) Band structure of the graphene/MoS2 heterostructure calculated by this paper; (b) the band structure of the graphene/MoS2 heterostructure calculated by Ref. [38].

    图 2  (a) Graphene/InSe异质结的顶视图; (b) graphene/InSe异质结的顶视图; 灰色、橙色和棕色小球分别表示碳原子、硒原子和铟原子

    Fig. 2.  Top view (a) and side view (b) of the graphene/InSe heterostructures. The gray, orange and brown balls are for C, Se and In atoms, respectively.

    图 3  (a) Graphene/InSe异质结的投影能带结构图, 红色线条表示graphene的能带, 蓝色线条表示InSe的能带; (b) graphene的能带结构图; (c)单层InSe的能带结构图; 费米能级设为零点

    Fig. 3.  (a) Projected band structure of the graphene/InSe heterostructure, where the red and blue lines represent for the energy band of graphene and InSe, respectively; (b) the band structure of graphene; (c) the band structure of monolayer InSe. The Fermi level is set to zero.

    图 4  Graphene/InSe异质结的平面平均差分电荷密度图, 图中的竖直黑色虚线表示graphene层和InSe层的分界线

    Fig. 4.  Plane-averaged charge density difference of the graphene/InSe heterostructure. The black vertical dashed line denotes the intermediate position of graphene and InSe.

    图 5  施加不同外电场时graphene/InSe异质结的投影能带图, 图中蓝色线条表示InSe的能带, 红色线条表示graphene的能带, 费米能级设为零点

    Fig. 5.  Projected band structures of graphene/InSe heterostructures under different external electric fields. The red and blue lines represent for the energy band of graphene and InSe, respectively. The Fermi level is set to zero.

    图 6  Graphene/InSe异质结的肖特基势垒随外电场的变化

    Fig. 6.  Evolution of Schottky barriers of the graphene/InSe heterostructurer as a function of external electric field.

    图 7  (a) 施加正外电场时graphene/InSe异质结的平面平均差分电荷密度图; (b) 施加负外电场时graphene/InSe异质结的平面平均差分电荷密度图; 图中的竖直黑色虚线表示graphene层和InSe层的分界线

    Fig. 7.  (a) Plane-averaged charge density difference of the graphene/InSe heterostructure under positive external electric fields; (b) the plane-averaged charge density difference of the graphene/InSe heterostructure under negative external electric fields. The black vertical dashed line denotes the intermediate position of graphene and InSe.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, et al. 2005 Nature 438 197Google Scholar

    [3]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Tang Q, Zhou Z 2013 Prog. Mater. Sci. 58 1244Google Scholar

    [5]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [6]

    Balog R, Jørgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315Google Scholar

    [7]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [8]

    Huang L, Huo N J, Li Y, Chen H, Yang J H, Wei Z M, Li J B, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [9]

    Kang J, Sahin H, Peeters F M 2015 J. Phys. Chem. C 119 9580Google Scholar

    [10]

    Yu J H, Lee H R, Hong S S, Kong D S, Lee H W, Wang H T, Xiong F, Wang S, Cui Y 2015 Nano Lett. 15 1031Google Scholar

    [11]

    Xiang Q J, Yu J G, Jaroniec M 2011 J. Phys. Chem. C 115 7355Google Scholar

    [12]

    Li X H, Chen J S, Wang X, Sun J, Antonietti M 2011 J. Am. Chem. Soc. 133 8074Google Scholar

    [13]

    Du A, Sanvito S, Li Z, et al. 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [14]

    Dean C R, Young A F, Meric I, et al. 2010 Nat. Nanotechnol. 5 722Google Scholar

    [15]

    Xue J, Sanchez-Yamagishi J, Bulmash D, et al. 2011 Nat. Mater. 10 282Google Scholar

    [16]

    Sławin′ska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433Google Scholar

    [17]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B, Chen H 2013 J. Mater. Chem. C 1 1618Google Scholar

    [18]

    Ma Y, Dai Y, Guo M, Niu C, Huang B 2011 Nanoscale 3 3883Google Scholar

    [19]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [20]

    Britnell L, Ribeiro R M, Eckmann A, et al. 2013 Science 340 1311Google Scholar

    [21]

    Tian H, Tan Z, Wu C, et al. 2014 Sci. Rep. 4 5951

    [22]

    Tung R 2014 Appl. Phys. Rev. 1 011304Google Scholar

    [23]

    Mudd G, Patane A, Kudrynskyi Z, et al. 2014 Appl. Phys. Lett. 105 221909Google Scholar

    [24]

    Wu M, Shi J, Zhang M, Ding Y, Wang H, Cen Y, Lu J 2018 Nanoscale 10 11441Google Scholar

    [25]

    Ho P H, Chang Y R, Chu Y C, Li M K, Tsai C A, Wang W H, Ho C H, Chen C W, Chiu P W 2017 ACS Nano 11 7362Google Scholar

    [26]

    Tamalampudi S, Lu Y, Kumar U, Sankar R, Liao C, Moorthy B, Cheng C, Chou F, Chen Y 2014 Nano Lett. 14 2800Google Scholar

    [27]

    Lei S, Ge L, Najmaei S, et al. 2014 ACS Nano 8 1263Google Scholar

    [28]

    Sun C, Xiang H, Xu B, Xia Y, Yin J, Liu Z 2016 Appl. Phys. Express 9 035203Google Scholar

    [29]

    Bandurin D A, Tyurnina A V, Yu G L, et al. 2017 Nat. Nanotechnol. 12 223Google Scholar

    [30]

    Feng W, Zheng W, Cao W, Hu P 2014 Adv. Mater. 26 6587Google Scholar

    [31]

    Padilha J E, Miwa R H, Silva A J R, Fazzio A 2017 Phys. Rev. B 95 195143Google Scholar

    [32]

    Yan F, Zhao L, Patane A, Hu P, Wei X, Luo W, Zhang D, Lv Q, Feng Q, Shen C, Chang K, Eaves L, Wang K 2017 Nanotechnology 28 27LT01Google Scholar

    [33]

    Mudd G W, Svatek S A, Hague L, et al. 2015 Adv. Mater. 27 3760Google Scholar

    [34]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [37]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [38]

    Singh S, Espejo C, Romero A 2018 Phys. Rev. B 98 155309Google Scholar

    [39]

    Woessner A, Lundeberg M B, Gao Y, et al. 2015 Nat. Mater. 14 421Google Scholar

    [40]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [41]

    Sun M, Chou J P, Yu J, Tang W 2017 J. Mater. Chem. C 5 10383Google Scholar

  • [1] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [2] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 丁华俊, 薛忠营, 魏星, 张波. 1 nm Al 插入层调节 NiGe/n-Ge 肖特基势垒. 物理学报, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [5] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [6] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究. 物理学报, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [7] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理. 物理学报, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [8] 吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究. 物理学报, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [9] 尹跃洪, 陈宏善, 宋燕. 电场诱导(MgO)12储氢的从头计算研究. 物理学报, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [10] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [11] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [12] 石大为, 吴美玲, 杨昌平, 任春林, 肖海波, 王开鹰. Pr0.7Ca0.3MnO3陶瓷晶界势垒的交流特性. 物理学报, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [13] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 肖特基势垒对CdS/CdTe薄膜电池J-V暗性能的影响. 物理学报, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [14] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性. 物理学报, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [15] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [16] 修明霞, 任俊峰, 王玉梅, 原晓波, 胡贵超. 肖特基势垒对铁磁/有机半导体结构自旋注入性质的影响. 物理学报, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [17] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [18] 阮 文, 罗文浪, 张 莉, 朱正和. 外电场作用下苯乙烯分子结构和电子光谱. 物理学报, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [20] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响. 物理学报, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
计量
  • 文章访问数:  8674
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 修回日期:  2020-04-25
  • 上网日期:  2020-05-14
  • 刊出日期:  2020-08-05

/

返回文章
返回