搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于紧聚焦方式的阵列光束相干合成特性分析

钟哲强 母杰 王逍 张彬

引用本文:
Citation:

基于紧聚焦方式的阵列光束相干合成特性分析

钟哲强, 母杰, 王逍, 张彬

Analysis of coherent combination characteristics of beam array via tight focusing

Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin
PDF
HTML
导出引用
  • 为获得高功率、波长量级尺寸的聚焦光斑, 提出利用紧聚焦方式实现阵列光束相干合成的新方案. 通过建立阵列光束经紧聚焦方式相干合成的物理模型, 分析了阵列光束的排布方式、偏振态、束宽、间距和紧聚焦系统数值孔径等参数对合成光束特性的影响及规律. 结果表明, 阵列光束经紧聚焦方式合束时, 线偏振及圆偏振阵列光束均能获得较好的合成效果, 径向偏振阵列光束次之, 而角向偏振阵列光束则不能有效地合成. 通过优化阵列光束的排布方式、束宽和间距, 以及合理选择紧聚焦系统的数值孔径, 能在保持较好光束质量和较高合成效率的前提下获得能量集中度高的焦斑.
    In order to obtain focal spot with high power and spot size comparable to wavelength scale, a novel approach to achieving the coherent combination of beam array by tightly focusing is proposed. The physical model of coherent beam combination of beam array via tightly focusing is built up by the use of the vector diffraction integral. Therefore the influences of beam configuration, polarization state, beam width, beam interval and numerical aperture of the tight focusing system on the characteristics of the combined beam are discussed in detail. The results indicate that the coherent combination effect of beam array with linear and circular polarization via tight focusing is the first best, and that with the radial polarization is the second best but that with the azimuthal polarization is the worst. The beam array of linear and circular polarization with rectangle configuration can be tightly focused onto center point, and the beam array with hexagon is also focused onto center point but with lower efficiency. In addition, by enlarging the beam width and the beam interval to a certain extent, the combination efficiency can be increased. By optimizing the beam configuration, beam width and interval, and selecting rational numerical aperture of the tightly focusing geometry, the focal spot with high energy concentration can be obtained with high beam quality and combination efficiency.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 国家级-国家自然科学青年基金(61905167)
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    [1]

    杨若夫, 杨平, 沈锋 2009 物理学报 58 8297Google Scholar

    Yang R F, Yang P, Shen F 2009 Acta Phys. Sin. 58 8297Google Scholar

    [2]

    范馨燕 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Fang X Y 2010 Ph. D. Dissertation (Harbin: Harbin Institute Of Technology) (in Chinese)

    [3]

    Christensen S, Koski O 2007 Advanced Solid-State Photonics. Optical Society of America, Vancouver, Canada, January 28–31, 2007 WC1

    [4]

    刘作业, 李露, 胡碧涛 2012 激光技术 5 657Google Scholar

    Liu Z Y, Li L, Hu B T 2012 Laser Tech. 5 657Google Scholar

    [5]

    Zhang F, Yu H, Fang J, Zhang M, Chen S, Wang J, He A, Chen J 2016 Opt. Express 24 6656Google Scholar

    [6]

    陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 物理学报 64 097301Google Scholar

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 097301Google Scholar

    [7]

    王思聪, 李向平 2016 中国光学 9 185Google Scholar

    Wang S C, Li X P 2016 Chin. Opt. 9 185Google Scholar

    [8]

    张洲 2016 博士学位论文 (合肥: 安徽大学)

    Zhang Z 2016 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese)

    [9]

    赵维, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201Google Scholar

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201Google Scholar

    [10]

    Byrnes S J, Lenef A, Aieta F, Capasso F 2016 Opt. Express 24 5110Google Scholar

    [11]

    Shen W, Hu C, Li S, Hu X T 2017 Appl. Surf. Sci. 421 535Google Scholar

    [12]

    Wolf E 1959 P. Roy. Soc. A Mat. 253 349

    [13]

    Richards B, Wolf E 1959 P. Roy. Soc. A Mat. 253 358

    [14]

    Moh K J, Yuan X C, Bu J, Burge R E, Gao B Z 2007 Appl. Opt. 46 7544Google Scholar

    [15]

    谭毅, 李新阳 2014 物理学报 63 094202Google Scholar

    Tan T, Li X Y 2014 Acta Phys. Sin. 63 094202Google Scholar

    [16]

    Gilad M L, Uriel L 2008 Opt. Express 16 4567Google Scholar

    [17]

    Uberna R, Bratcher A, Tiemann B G 2010 IEEE J. Quantum. Electron. 46 1191Google Scholar

    [18]

    Liu Z J, Ma P F, Su R T, Tao R M, Ma Y X, Wang X L, Zhou P 2017 J. Opt. Soc. Am. B 34 A7Google Scholar

    [19]

    Tian B, Pu J X 2011 Opt. Lett. 36 2014Google Scholar

    [20]

    Cheng Z, Zhou Y Y, Xia M, Li W, Yang K C, Zhou Y F 2015 Opt. Laser Technol. 73 77Google Scholar

  • 图 1  阵列光束经紧聚焦方式合成的光路图

    Fig. 1.  Light path of beam combination of beam array via tight focusing.

    图 2  光束排布方式 (a)矩形; (b)六边形

    Fig. 2.  Beam configurations: (a) Rectangle; (b) hexagon.

    图 3  矩形排布方式下, 不同偏振态阵列光束的聚焦光斑

    Fig. 3.  Tight-focused spots of beam array with different polarization states under rectangle configuration.

    图 4  六边形排布方式下, 不同偏振态阵列光束的聚焦光斑

    Fig. 4.  Tight-focused spots of beam array with different polarization states under hexagon configuration.

    图 5  不同光束排布和偏振态时, 焦斑的PIB曲线

    Fig. 5.  PIB curves of the focal spots of beam array with different beam configurations and polarization states.

    图 6  矩形排布方式下, 不同偏振态阵列光束的焦斑光强

    Fig. 6.  Focused intensity distribution of beam array with different polarization states under rectangle configuration.

    图 7  矩形排布方式下, 不同束宽及γ时的聚焦光斑

    Fig. 7.  Focused spots of beam array with different beam widths and γ under rectangle configuration.

    图 8  矩形排布方式下, (a)不同间距比时聚焦光斑的PIB曲线, 以及(b)不同束宽时聚焦光斑的PIB曲线

    Fig. 8.  PIB curves of the focal spots of beam array with different (a) beam widths and (b) γ under rectangle configuration.

    图 9  矩形排布方式下, 不同数值孔径和介质折射率下聚焦光斑的PIB曲线

    Fig. 9.  PIB curves of the focal spots of beam array with numerical apertures and refractive indices under rectangle configuration.

    表 1  不同偏振态的矩阵P0(θ, φ)[14]

    Table 1.  Matrixes P0(θ, φ)[14] of different polarization states.

    偏振态线偏振左旋圆偏振径向偏振角向偏振
    矩阵$\left[ \begin{aligned} 1 \\ 0 \\ 0 \\ \end{aligned} \right]$$\left[ \begin{aligned} { {1{\rm{i} } } }/{ {\sqrt 2 } } \\ {1}/{ {\sqrt 2 } } \\ 0\;\;\end{aligned} \;\right]$$\left[ \begin{aligned} \cos \varphi \\ \sin\; \varphi \\ 0\;\;\;\end{aligned} \right]$$\left[ \begin{aligned} - \sin \varphi \\ \cos \varphi \\ 0\;\;\;\;\end{aligned} \right]$
    下载: 导出CSV

    表 2  矩形排布方式下, 圆偏振阵列光束的合成效率

    Table 2.  Combining efficiency of beam array with circular polarization under rectangle configuration.

    束宽/ μm
    80100120
    γ = 2.263.5%75.2%88.4%
    γ = 2.670.0%79.4%89.5%
    下载: 导出CSV

    表 3  不同数值孔径和介质下, 阵列光束焦斑尺寸

    Table 3.  Focal-spot width of beam array with numerical apertures and refractive indices under rectangle configuration.

    介质
    空气
    NA0.750.800.850.900.950.950.95
    阵列光束焦斑
    半径/μm
    0.500.490.470.460.450.400.35
    下载: 导出CSV
  • [1]

    杨若夫, 杨平, 沈锋 2009 物理学报 58 8297Google Scholar

    Yang R F, Yang P, Shen F 2009 Acta Phys. Sin. 58 8297Google Scholar

    [2]

    范馨燕 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Fang X Y 2010 Ph. D. Dissertation (Harbin: Harbin Institute Of Technology) (in Chinese)

    [3]

    Christensen S, Koski O 2007 Advanced Solid-State Photonics. Optical Society of America, Vancouver, Canada, January 28–31, 2007 WC1

    [4]

    刘作业, 李露, 胡碧涛 2012 激光技术 5 657Google Scholar

    Liu Z Y, Li L, Hu B T 2012 Laser Tech. 5 657Google Scholar

    [5]

    Zhang F, Yu H, Fang J, Zhang M, Chen S, Wang J, He A, Chen J 2016 Opt. Express 24 6656Google Scholar

    [6]

    陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 物理学报 64 097301Google Scholar

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 097301Google Scholar

    [7]

    王思聪, 李向平 2016 中国光学 9 185Google Scholar

    Wang S C, Li X P 2016 Chin. Opt. 9 185Google Scholar

    [8]

    张洲 2016 博士学位论文 (合肥: 安徽大学)

    Zhang Z 2016 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese)

    [9]

    赵维, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201Google Scholar

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201Google Scholar

    [10]

    Byrnes S J, Lenef A, Aieta F, Capasso F 2016 Opt. Express 24 5110Google Scholar

    [11]

    Shen W, Hu C, Li S, Hu X T 2017 Appl. Surf. Sci. 421 535Google Scholar

    [12]

    Wolf E 1959 P. Roy. Soc. A Mat. 253 349

    [13]

    Richards B, Wolf E 1959 P. Roy. Soc. A Mat. 253 358

    [14]

    Moh K J, Yuan X C, Bu J, Burge R E, Gao B Z 2007 Appl. Opt. 46 7544Google Scholar

    [15]

    谭毅, 李新阳 2014 物理学报 63 094202Google Scholar

    Tan T, Li X Y 2014 Acta Phys. Sin. 63 094202Google Scholar

    [16]

    Gilad M L, Uriel L 2008 Opt. Express 16 4567Google Scholar

    [17]

    Uberna R, Bratcher A, Tiemann B G 2010 IEEE J. Quantum. Electron. 46 1191Google Scholar

    [18]

    Liu Z J, Ma P F, Su R T, Tao R M, Ma Y X, Wang X L, Zhou P 2017 J. Opt. Soc. Am. B 34 A7Google Scholar

    [19]

    Tian B, Pu J X 2011 Opt. Lett. 36 2014Google Scholar

    [20]

    Cheng Z, Zhou Y Y, Xia M, Li W, Yang K C, Zhou Y F 2015 Opt. Laser Technol. 73 77Google Scholar

计量
  • 文章访问数:  6745
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-02-09
  • 刊出日期:  2020-05-05

/

返回文章
返回