搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓在不同中子辐照环境下的位移损伤模拟研究

谢飞 臧航 刘方 何欢 廖文龙 黄煜

引用本文:
Citation:

氮化镓在不同中子辐照环境下的位移损伤模拟研究

谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜

Simulated research on displacement damage of gallium nitride radiated by different neutron sources

Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu
PDF
HTML
导出引用
  • 电子器件中的半导体材料经过中子辐照后产生大量位移损伤, 进而影响器件性能, 氮化镓(GaN)材料是第三代宽禁带半导体, GaN基电子器件在国防、空间和航天等辐射服役环境中具有重要应用. 本文利用蒙特卡罗软件Geant4模拟了中子在GaN材料中的输运过程, 对在大气中子、压水堆、高温气冷堆和高通量同位素堆外围辐照区四种中子辐照环境下GaN中的初级反冲原子能谱及加权初级反冲原子能谱进行了分析. 研究发现: 在四种辐照环境下GaN中初级反冲原子能谱中, 均在0.58 MeV附近处出现不常见的“尖峰”, 经分析该峰为核反应产生的H原子峰, 由于低能中子$ ({\rm{n}},{\rm{p}})$反应截面较大, 该峰的强弱和低能中子占总能谱的比例有关; 通过对比四种中子辐照环境下GaN中初级反冲原子能谱分布可知, 大气中子能谱辐照产生的初级反冲原子能量更低、分布范围更广, 裂变堆能谱下较高能量的初级反冲原子的比例较大, 大气中子和高通量同位素堆辐照环境下的初级反冲原子能谱与加权初级反冲原子谱形状更相似, 结合核反应产物对电学性能的影响, 高通量同位素堆外围辐照区更适合用于模拟GaN在大气中子环境下的辐照实验. 该结果对GaN基电子器件在辐射环境下长期服役评估研究和GaN材料的反应堆模拟中子辐照环境实验研究具有参考价值.
    Gallium nitride (GaN), one of the third-generation wide-bandgap semiconductors, offers significant application for advanced electronic devices utilized in neutron irradiation environments, like the defense, space, and aerospace, etc. In these applications, neutron irradiation-induced defects affect the properties of GaN and eventually degrade the performance of devices. In this work, neutron transport process in GaN is simulated by using the Monte Carlo-based code, Geant4 toolkit under four different irradiation conditions, e.g. high flux isotope reactor, high temperature gas-cooled reactor, pressurized water reactor, and atmospheric neutron irradiation. The energy spectra of primary knock-on atoms (PKA) in GaN and the corresponding weighted spectra under those irradiation conditions are analyzed. It is found that there is one unusual “peak” at around 0.58 MeV in the Primary recoil spectrum, regardless of the irradiation conditions. This peak is attributed to the neutron reaction of hydrogen nucleus, i.e., (n, p). Because of the remarkable (n,p) reaction cross-section of low-energy neutron, the intensity of this peak is related to the ratio of low-energy neutron to the total neutron spectrum. By comparing these PKA energy spectra in GaN, we can see that the PKA energy spectrum created under atmospheric neutron irradiation is similar to that in the high flux isotopic reactor. Specifically, the energy distribution of PKA is wide, and the magnitude of energy is lower than those under fission neutron irradiation conditions. In combination with the effects of nuclear reaction products on electrical properties, the high flux isotopic reactor is more suitable for simulating the irradiation of GaN in an atmospheric neutron energy spectrum environment. These above results can provide not only some insights into the evaluation of the degradation of GaN-based electronic devices under neutron irradiation, but also dataset for the study of radiation damage effect of GaN in simulated neutron environment.
      通信作者: 臧航, zanghang@mail.xjtu.edu.cn
    • 基金项目: 科学挑战专题资助项目(批准号: TZ2018004)和国家自然科学基金(批准号: 11975179)资助的课题
      Corresponding author: Zang Hang, zanghang@mail.xjtu.edu.cn
    • Funds: Project supported by the Science Challenge Project (Grant No. TZ2018004) and the National Natural Science Foundation of China (Grant No. 11975179)
    [1]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 物理学报 10 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 10 107102Google Scholar

    [2]

    赵德刚, 周梅, 左淑华 2007 物理学报 56 5513Google Scholar

    Zhao D G, Zuo S H, Zhou M 2007 Acta Phys. Sin. 56 5513Google Scholar

    [3]

    张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新 2017 物理学报 66 247302Google Scholar

    Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302Google Scholar

    [4]

    孙殿照 2000 物理 30 413

    Sun D Z 2000 Physics 30 413

    [5]

    Hadis Morkoç 2008 Handbook of Nitride Semiconductors and Devices (Weinheim: Wiley-VCH) pp1–129

    [6]

    Lorenz K, Marques J G, Franco N, Alves E, Peres M, Correia M R, Monteiro T 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 2780

    [7]

    Kazukauskas V, Kalendra V, Vaitkus V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 568 421

    [8]

    Zhang M L, Wang X L, Xiao H L, Yang C B, Wang R 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, November 1–4, 2010 p1533

    [9]

    张得玺 2015 硕士学位论文 (西安: 西安电子科技大学)

    Zhang D X 2015 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [10]

    吕玲2014 博士学位论文 (西安 西安电子科技大学)

    Lv L 2014 Ph.D. Thesis (Xi’an Xidian University)(in Chinese)

    [11]

    Wang R X, Xu S J, Li S, Fung S, Beling C D, Wang K, Wei Z F, Zhou T J, Zhang J D, Gong M, Pang G K H 2004 Conference on Optoelectronic and Microelectronic Materials and Devices Brisbane December 8–10 2004 p141

    [12]

    Wang R X, Xu S J, Fung S, Beling C D, Wang K, Li S, Wei Z F, Zhou T J, Zhang J D, Huang Y 2005 Appl. Phys. Lett. 87 031906

    [13]

    王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505

    Wang Y M, Cheng W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atom Energ. Sci. Technol. 44 1505

    [14]

    曾志, 李君利, 程建平, 邱睿 2005 同位素 18 55Google Scholar

    Zeng Z, LI J L, Cheng J P, Qiu R 2005 J. Isotop. 18 55Google Scholar

    [15]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529

    [16]

    Agostinelli S, Allison J, Amako K 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250

    [17]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [18]

    Apostolakis J, Asai M, Bogdanoy A G 2009 Radiat. Phys. Chem. 78 859

    [19]

    何博文, 贺朝会, 申帅帅, 陈袁妙粱 2017 原子能科学技术 51 543Google Scholar

    He B W, He C H, Shen S S, Chen Y M L 2017 Atom Energ. Sci. Technol. 51 543Google Scholar

    [20]

    郭达禧, 贺朝会, 臧航, 席建奇, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom Energ Sci Technol 47 1222Google Scholar

    [21]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [22]

    Was GS. 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer) pp545–577

    [23]

    Hu J W, Hayes A C, Wilson W B, Rizwan U 2010 Nucl. Eng Des 240 3751

    [24]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [25]

    Akkerman A, Barak J 2006 Proc. IEEE Trans. Nucl. Sci. 53 3667

    [26]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Berlin, Wiley-VCG) pp220-224

    [27]

    杨福家, 王炎森, 陆福全 2002 原子核物理 (第2版) (上海: 复旦大学出版社) 第153页

    Yang F J, Wang Y S, Lu F Q 2002 Nuclear Physics (Vol.2) (Shanghai: Fudan University Press) p153 (in Chinese)

    [28]

    Wiedersich H 1990 Radiat. Eff. and Defects. Solids 113 97

    [29]

    Mota F, Vila R, Ortiz C, Garcia A, Casal N, Ibarra A, Rapisarda D, Queral V 2011 Fusion Eng. Des. 86 2425

  • 图 1  四种典型的归一化中子能谱

    Fig. 1.  Four typical normalized neutron spectrum

    图 2  中子在GaN中的平均自由程

    Fig. 2.  The mean free path of neutrons in GaN.

    图 3  Geant4中模拟的几何模型

    Fig. 3.  Simulated geometric model in Geant4.

    图 4  四种中子能谱在氮化镓中对应的初级反冲原子能谱

    Fig. 4.  Primary recoil spectrum of four neutron spectra in GaN.

    图 5  高通量同位素堆外围辐照区环境下的初级反冲原子能谱分析

    Fig. 5.  Analysis of primary recoil spectrum over peripheral irradiation area in high flux isotope reactor.

    图 6  中子辐照氮化镓的$ ({\rm{n}}, {\rm{p}})$反应截面

    Fig. 6.  (n,p)reaction cross section for GaN.

    图 7  产氢反应比例随中子能量变化

    Fig. 7.  Proportion of hydrogen production reaction varies with neutron energy.

    图 8  四种中子能谱的累积积分中子能谱

    Fig. 8.  Cumulative integral neutron spectra of four neutron spectra.

    图 9  不同中子能谱在氮化镓中对应的初级反冲原子的能谱分布 (a)Ga初级反冲原子能谱; (b)N初级反冲原子的能谱; (c)B初级反冲原子的能谱; (d) C初级反冲原子的能谱

    Fig. 9.  Primary recoils spectrum distribution for different neutron spectra for the primary recoil particle type of (a) Ga, (b) N, (c) B, (d) C.

    图 10  四种中子能谱在氮化镓中对应的加权初级初级反冲原子谱Wp(T)

    Fig. 10.  Weighted primary recoil spectra of four neutron spectra in GaN.

    图 11  所研究中子能谱在氮化镓中对应的加权初级反冲原子谱Wp(T) (a) Ga加权初级反冲原子谱; (b) N加权初级反冲原子谱; (c) B加权初级反冲原子谱; (d) C加权初级反冲原子谱

    Fig. 11.  Weighted primary recoil spectra of studied neutron spectra in GaN: (a) Ga; (b) N; (c) B; (d) C.

    表 1  不同能谱下初级反冲原子占比

    Table 1.  Primary recoils proportion of different spectrum.

    能谱初级反冲原子比例/%
    GaNCBHHeother
    大气中子52.3445.081.250.0321.260.0340.004
    压水堆54.2643.390.920.250.920.250.01
    高温气冷堆54.8743.620.520.230.520.230.01
    同位素堆48.2744.943.280.113.280.110.01
    下载: 导出CSV
  • [1]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 物理学报 10 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 10 107102Google Scholar

    [2]

    赵德刚, 周梅, 左淑华 2007 物理学报 56 5513Google Scholar

    Zhao D G, Zuo S H, Zhou M 2007 Acta Phys. Sin. 56 5513Google Scholar

    [3]

    张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新 2017 物理学报 66 247302Google Scholar

    Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302Google Scholar

    [4]

    孙殿照 2000 物理 30 413

    Sun D Z 2000 Physics 30 413

    [5]

    Hadis Morkoç 2008 Handbook of Nitride Semiconductors and Devices (Weinheim: Wiley-VCH) pp1–129

    [6]

    Lorenz K, Marques J G, Franco N, Alves E, Peres M, Correia M R, Monteiro T 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 2780

    [7]

    Kazukauskas V, Kalendra V, Vaitkus V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 568 421

    [8]

    Zhang M L, Wang X L, Xiao H L, Yang C B, Wang R 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, November 1–4, 2010 p1533

    [9]

    张得玺 2015 硕士学位论文 (西安: 西安电子科技大学)

    Zhang D X 2015 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [10]

    吕玲2014 博士学位论文 (西安 西安电子科技大学)

    Lv L 2014 Ph.D. Thesis (Xi’an Xidian University)(in Chinese)

    [11]

    Wang R X, Xu S J, Li S, Fung S, Beling C D, Wang K, Wei Z F, Zhou T J, Zhang J D, Gong M, Pang G K H 2004 Conference on Optoelectronic and Microelectronic Materials and Devices Brisbane December 8–10 2004 p141

    [12]

    Wang R X, Xu S J, Fung S, Beling C D, Wang K, Li S, Wei Z F, Zhou T J, Zhang J D, Huang Y 2005 Appl. Phys. Lett. 87 031906

    [13]

    王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505

    Wang Y M, Cheng W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atom Energ. Sci. Technol. 44 1505

    [14]

    曾志, 李君利, 程建平, 邱睿 2005 同位素 18 55Google Scholar

    Zeng Z, LI J L, Cheng J P, Qiu R 2005 J. Isotop. 18 55Google Scholar

    [15]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529

    [16]

    Agostinelli S, Allison J, Amako K 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250

    [17]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [18]

    Apostolakis J, Asai M, Bogdanoy A G 2009 Radiat. Phys. Chem. 78 859

    [19]

    何博文, 贺朝会, 申帅帅, 陈袁妙粱 2017 原子能科学技术 51 543Google Scholar

    He B W, He C H, Shen S S, Chen Y M L 2017 Atom Energ. Sci. Technol. 51 543Google Scholar

    [20]

    郭达禧, 贺朝会, 臧航, 席建奇, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom Energ Sci Technol 47 1222Google Scholar

    [21]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [22]

    Was GS. 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer) pp545–577

    [23]

    Hu J W, Hayes A C, Wilson W B, Rizwan U 2010 Nucl. Eng Des 240 3751

    [24]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [25]

    Akkerman A, Barak J 2006 Proc. IEEE Trans. Nucl. Sci. 53 3667

    [26]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Berlin, Wiley-VCG) pp220-224

    [27]

    杨福家, 王炎森, 陆福全 2002 原子核物理 (第2版) (上海: 复旦大学出版社) 第153页

    Yang F J, Wang Y S, Lu F Q 2002 Nuclear Physics (Vol.2) (Shanghai: Fudan University Press) p153 (in Chinese)

    [28]

    Wiedersich H 1990 Radiat. Eff. and Defects. Solids 113 97

    [29]

    Mota F, Vila R, Ortiz C, Garcia A, Casal N, Ibarra A, Rapisarda D, Queral V 2011 Fusion Eng. Des. 86 2425

  • [1] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [4] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [5] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [6] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [7] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [8] 廖健宏, 曾群, 袁茂辉. GaN基薄膜半导体材料不同非线性效应的竞争关系. 物理学报, 2018, 67(23): 236101. doi: 10.7498/aps.67.20181347
    [9] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [10] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [11] 汤文辉, 刘邦武, 张柏诚, 李敏, 夏洋. 等离子增强原子层沉积低温生长GaN薄膜. 物理学报, 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [12] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量. 物理学报, 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [13] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [14] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [15] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [16] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [17] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [19] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  6945
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 修回日期:  2020-06-19
  • 上网日期:  2020-06-19
  • 刊出日期:  2020-10-05

/

返回文章
返回