搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究

布玛丽亚·阿布力米提 凌丰姿 邓绪兰 魏洁 宋辛黎 向梅 张冰

引用本文:
Citation:

2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究

布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰

Intersystem crossing of 2-Methlypyrazine studied by femtosecond photoelectron imaging

Bumaliya Abulimiti, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Song Xin-Li, Xiang Mei, Zhang Bing
PDF
HTML
导出引用
  • 飞秒时间分辨光电子影像技术和飞秒时间分辨质谱技术相结合, 研究了2-甲基吡嗪分子电子激发态超快非绝热弛豫动力学. 用323 nm光作为泵浦光, 把2-甲基吡嗪分子激发到第一激发态S1, 用400 nm光探测激发态演化过程. 通过时间分辨质谱技术测得S1态的寿命为98 ps. 实验中, 实时观察到了单重态S1向三重态T1的系间交叉过程. 通过分析发现, 跟吡嗪分子S1态的动力学过程不同, 2-甲基吡嗪分子激发到S1态后, 不仅S1 → T1系间交叉过程是S1态主要衰减通道, S1 → S0内转换过程也是S1态另一个主要衰减通道. 发挥飞秒时间分辨光电子影像技术的优点, 实验上得到不同泵浦-探测时间延迟的光电子角分布, 从角分布信息结合光电子能谱信息, 尝试观察2-甲基吡嗪分子的非绝热无场准直, 但由于2-甲基吡嗪分子对称性比吡嗪分子更低, 对称性更低分子准直现象的观察更有挑战性, 在实验中未能观察到非绝热准直动力学. 本工作为2-甲基吡嗪分子S1态非绝热弛豫动力学提供了较清楚的物理图像.
    The ultrafast nonadibatic relaxation dynamics of the excited state of 2-methylpyrazine has been studied by using femtosecond time-resolved photoelectron imaging and femtosecond time-resolved mass spectrometry. The first excited state S1 of 2-methylpyrazine was excited by 323 nm pump light, and the excited state deactivation process is detected by 400 nm probe light. The lifetime of S1 state 98 ps is obtained by time-resolved mass spectroscopy. The intersystem crossing from the S1 state to the T1 state is observed on real time. The relaxation dynamics of S1 state of 2-methlypyrazine is different from that of pyrazine, the results show that the intersystem crossing process between S1 and T1 is the main relaxation channel of S1 state of 2-methlypyrazine, but the internal conversion process between S1 and S0 is also a main relaxation channel of S1 state. By using the advantages of femtosecond time-resolved photoelectron imaging, the photoelectron angular distribution at different pump-probe time delay was obtained experimentally. From the photoelectron angle distribution combined with photoelectron kinetic energy distributions, we tried to observe the field-free nonadiabatic alignment. However, due to the fact that the molecular symmetry of 2-methylpyrazine is lower than that of pyrazine, it is more challenging to observe the phenomenon of molecular nonadiabatic alignment with lower symmetry. Therefore, it is fail to observe nonadiabatic alignment feature of 2-methylpyrazine in this experiment. This work provides a clearer physical picture for S1 state nonadibatic relaxation dynamics of 2-methylpyrazine.
      通信作者: 布玛丽亚·阿布力米提, maryam917@163.com ; 向梅, xm120922@xjnu.edu.cn
    • 基金项目: 国家级-基于人工表面等离激元的功能集成型辐射器研究(11564040, 21763027)
      Corresponding author: Bumaliya Abulimiti, maryam917@163.com ; Xiang Mei, xm120922@xjnu.edu.cn
    [1]

    De Gruijl F 1999 Eur. J. Cancer 35 2003Google Scholar

    [2]

    Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T 2003 Toxicology 189 21Google Scholar

    [3]

    Iqbal A, Stavros V G 2010 J. Phys. Chem. Lett. 1 2274Google Scholar

    [4]

    Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1

    [5]

    Gustavsson T, Improta R, Markovitsi D 2010 J. Phys. Chem. Lett. 1 2025Google Scholar

    [6]

    Schoenlein R W, Peteanu L A, Mathies R, Shank C V 1991 Science 254 412Google Scholar

    [7]

    Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859Google Scholar

    [8]

    Song J K, Tsubouchi M, Suzuki T 2001 J. Chem. Phys. 115 8810Google Scholar

    [9]

    Ling F Z, Li S, Song X L, Wang Y M, Long J Y, Zhang B 2017 Sci. Rep. 7 15362Google Scholar

    [10]

    Toshinori S 2014 Bull. Chem. Soc. Jpn. 87 341Google Scholar

    [11]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613Google Scholar

    [12]

    Suzuki Y I, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [13]

    Frad A, Lahmani F, Tramer A, Tric C 1974 J. Chem. Phys. 60 4419Google Scholar

    [14]

    Zhong D, Diau E W G, Bernhardt T M, Feyter S D, Roberts J D, Zewail A H 1998 Chem. Phys. Lett. 298 129Google Scholar

    [15]

    Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37Google Scholar

    [16]

    Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500Google Scholar

    [17]

    刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Xiao S R, Wang J F, He Zhong F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301Google Scholar

    [18]

    刘玉柱, 陈云云, 郑改革, 金峰Gregor, Knopp 2016 物理学报 65 053302Google Scholar

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302Google Scholar

    [19]

    Liu Y Z, Knopp G, Qin C C, Gerber T 2015 Chem. Phys. 446 142Google Scholar

    [20]

    Fuji T, Suzuki Y I, Horio T, Suzuki T, Mitrić R, Werner U, Koutecký V B 2010 J. Chem. Phys. 133 234303Google Scholar

    [21]

    凌丰姿 2018 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)

    Ling F Z 2018 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [22]

    Hao Q L, Long J Y, Deng X L, Tang Y, Abulimiti B, Zhang B 2017 J. Phys. Chem. A 121 3858Google Scholar

    [23]

    Ling F, Li S, Wei J, Liu K, Wang Y M, Zhang B 2018 J. Chem. Phys. 148 144311Google Scholar

    [24]

    Dribinski V, Ossadtchi A, Mandelshtam V. A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar

    [25]

    Matsumoto Y, Kim S. K, Suzuki T 2003 J. Chem. Phys. 119 300Google Scholar

  • 图 1  (a)光电子影像装置实物图; (b)飞秒时间分辨光电子影像装置示意图[21]

    Fig. 1.  (a) Photoelectron imaging apparatus; (b) schematic diagram of the femtosecond time resolved photoelectron imaging setup.

    图 2  (a)泵浦光323 nm, 探测光400 nm的各自单光和零时刻双光质谱;(b)泵浦光323 nm, 探测光400 nm作用下时间分辨母体离子信号, 图中实线表示拟合曲线, 圆圈代表实验数据

    Fig. 2.  (a) Two color (at time overlap) and one color mass spectra of 2-methlypyrazine at 323 nm pump and 400 nm probe; (b) time-resolved total ion signals of parent ion as a function of delay time between the pump pulse at 323 nm and the probe pulse at 400 nm. The circles are the experimental results, and solid lines are the fitting results.

    图 3  泵浦光323 nm, 探测光400 nm, 在不同时间延迟下的光电子原始影像和BASEX变换后的影像(上排为原始影像, 而下排为BASEX变换后的影像.). 泵浦光和探测光都是线偏振光, 偏振方向为图平面竖直方向

    Fig. 3.  Time-resolved photoelectron raw images (shown in the upper row) and BASEX-inverted images (shown in the lower row) at various time delays observed at 323 nm pump and 400 nm probe.

    图 4  (a)不同延迟时间下的光电子能谱; (b) 0 fs和92 ps时的光电子能谱

    Fig. 4.  (a) Photoelectron kinetic energy distributions (PKE) at different time delay; (b) photoelectron kinetic energy distributions at 0 and 92 ps.

    图 5  六个峰强度随泵浦-探测时间变化图

    Fig. 5.  Time-resolved PKE bands intensity as a function of representative delay times.

    图 6  (a) 0—4 ps泵浦-探测时间延迟下不同光电子峰强度变化; (b)不同光电子峰对应的不同泵浦-探测时间延迟下各向异性参数

    Fig. 6.  (a) The intensity changes of different photoelectronic peaks with 0–4 ps pump- probe time delay; (b) anisotropy parameters of the six rings as a function of pump-probe time delay.

    图 7  (a) 105—130 ps泵浦-探测时间延迟下不同光电子峰强度变化; (b)不同光电子峰对应不同泵浦-探测时间延迟下的各向异性参数

    Fig. 7.  (a) The intensity changes of different photoelectronic peaks with 105–130 ps pump- probe time delay; (b) anisotropy parameters of the six rings as a function of pump-probe time delay.

    图 8  2-甲基吡嗪分子被323 nm泵浦400 nm探测下的跃迁和电离机理示意图

    Fig. 8.  Schematic representation of the excitation and ionization scheme of 2-methlypyrazine using 323 nm pump and 400 nm probe pulses.

  • [1]

    De Gruijl F 1999 Eur. J. Cancer 35 2003Google Scholar

    [2]

    Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T 2003 Toxicology 189 21Google Scholar

    [3]

    Iqbal A, Stavros V G 2010 J. Phys. Chem. Lett. 1 2274Google Scholar

    [4]

    Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1

    [5]

    Gustavsson T, Improta R, Markovitsi D 2010 J. Phys. Chem. Lett. 1 2025Google Scholar

    [6]

    Schoenlein R W, Peteanu L A, Mathies R, Shank C V 1991 Science 254 412Google Scholar

    [7]

    Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859Google Scholar

    [8]

    Song J K, Tsubouchi M, Suzuki T 2001 J. Chem. Phys. 115 8810Google Scholar

    [9]

    Ling F Z, Li S, Song X L, Wang Y M, Long J Y, Zhang B 2017 Sci. Rep. 7 15362Google Scholar

    [10]

    Toshinori S 2014 Bull. Chem. Soc. Jpn. 87 341Google Scholar

    [11]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613Google Scholar

    [12]

    Suzuki Y I, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [13]

    Frad A, Lahmani F, Tramer A, Tric C 1974 J. Chem. Phys. 60 4419Google Scholar

    [14]

    Zhong D, Diau E W G, Bernhardt T M, Feyter S D, Roberts J D, Zewail A H 1998 Chem. Phys. Lett. 298 129Google Scholar

    [15]

    Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37Google Scholar

    [16]

    Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500Google Scholar

    [17]

    刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Xiao S R, Wang J F, He Zhong F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301Google Scholar

    [18]

    刘玉柱, 陈云云, 郑改革, 金峰Gregor, Knopp 2016 物理学报 65 053302Google Scholar

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302Google Scholar

    [19]

    Liu Y Z, Knopp G, Qin C C, Gerber T 2015 Chem. Phys. 446 142Google Scholar

    [20]

    Fuji T, Suzuki Y I, Horio T, Suzuki T, Mitrić R, Werner U, Koutecký V B 2010 J. Chem. Phys. 133 234303Google Scholar

    [21]

    凌丰姿 2018 博士学位论文(武汉: 中国科学院武汉物理与数学研究所)

    Ling F Z 2018 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [22]

    Hao Q L, Long J Y, Deng X L, Tang Y, Abulimiti B, Zhang B 2017 J. Phys. Chem. A 121 3858Google Scholar

    [23]

    Ling F, Li S, Wei J, Liu K, Wang Y M, Zhang B 2018 J. Chem. Phys. 148 144311Google Scholar

    [24]

    Dribinski V, Ossadtchi A, Mandelshtam V. A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar

    [25]

    Matsumoto Y, Kim S. K, Suzuki T 2003 J. Chem. Phys. 119 300Google Scholar

  • [1] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [4] 向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰. 苯乙炔分子电子激发态超快动力学研究. 物理学报, 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [5] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [6] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性. 物理学报, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [7] 钟梓源, 何凯, 苑云, 汪韬, 高贵龙, 闫欣, 李少辉, 尹飞, 田进寿. 低温生长铝镓砷光折变效应的研究. 物理学报, 2019, 68(16): 167801. doi: 10.7498/aps.68.20190459
    [8] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, 2018, 67(22): 227802. doi: 10.7498/aps.67.20181334
    [9] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [10] 易涛, 王传珂, 杨进文, 朱效立, 谢常青, 刘慎业. 基于移位双光栅色散元件的X射线谱仪研制. 物理学报, 2016, 65(16): 165201. doi: 10.7498/aps.65.165201
    [11] 刘院省, 刘世炳, 宋海英, 何润. 脉冲激光-铜靶等离子体产生及其演化过程的瞬态光谱研究. 物理学报, 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [12] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [13] 宋迎新, 郑卫民, 刘静, 初宁宁, 李素梅. 量子限制效应对δ掺杂GaAs/AlAs多量子阱中铍受主态寿命的影响. 物理学报, 2009, 58(9): 6471-6476. doi: 10.7498/aps.58.6471
    [14] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [15] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [16] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [17] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究. 物理学报, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
    [18] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用. 物理学报, 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
    [19] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, 2004, 53(11): 3902-3908. doi: 10.7498/aps.53.3902
    [20] 刘永贵, 钱宝良, 李传胪. 具有等离子体背景的电磁泵浦自由电子激光. 物理学报, 1995, 44(3): 409-412. doi: 10.7498/aps.44.409
计量
  • 文章访问数:  5561
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-03-12
  • 刊出日期:  2020-05-20

/

返回文章
返回