搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米盘棒耦合的多频段等离激元诱导透明研究

胡宝晶 黄铭 黎鹏 杨成福

引用本文:
Citation:

基于纳米盘棒耦合的多频段等离激元诱导透明研究

胡宝晶, 黄铭, 黎鹏, 杨成福

Multiband plasmon-induced transparency based on silver nanorods and nanodisk hybrid model

Hu Bao-Jing, Huang Ming, Li Peng, Yang Cheng-Fu
PDF
HTML
导出引用
  • 提出了基于银纳米棒和银纳米盘的多频段等离激元诱导透明(PIT)混合模型, 通过时域有限差分法研究了模型的电磁特性. 研究表明: 由于银纳米盘(明模)和银纳米棒(暗模)的明模-暗模-暗模耦合, 模型可以产生双频段的PIT效应. 在双频段的基础之上, 通过两个非对称的双频段PIT模型的叠加, 形成暗模-暗模-明模-暗模-暗模耦合, 可进一步实现四频段的PIT效应. 同时, 只要改变两种PIT模型中银纳米棒的长度以及银纳米棒和银纳米盘之间的距离, 双频段PIT和四频段PIT窗口的谐振频率和透射振幅都会随之变化. 最后研究了四频段PIT模型的传感效应, 发现该模型随背景材料折射率变化的灵敏度(sensitivity)达到了326.2625 THz/RIU, 优值系数(FOM)达到了26.4/RIU, 性能优于其他同类型传感器, 这为该模型在光存储、吸收、滤波和红外频段的传感器设计中的应用提供了理论参考.
    In this paper, the dual-band and four-band plamon-induced transparency(PIT) hybrid model based on silver nanorod and silver nanodisk hybrid model are proposed. The electromagnetic characteristics of the two PIT hybrid models are also estimated respectively. The results show that in the double-band PIT model, the silver nanodisk (bright mode) and the silver nanorod (dark mode) can form the bright-dark-dark mode coupling. Because of the destructive interference produced by nanodisk and nanorod and the emergence of new SPs resonance modes between nanorod and nanorod, the double-band PIT model can produce two transparent windows. When the length of the nanorods and the distance between the nanorods and nanodisk are changed, the resonant frequencies and transmission amplitudes of two transparent windows will be changed accordingly. In the four-band PIT model, the silver nanodisk and the silver nanorods will form the dark-dark-bright-dark-dark mode coupling. The resonant peaks of four transparent windows almost coincide with those of the two asymmetric double-band PIT models. Therefore, the four-band PIT model can be regarded as the superposition of two asymmetric double-band PIT models. The resonant frequencies and transmission amplitudes of four transparent windows also vary with the the length of nanorods and the distance between nanorods and nanodisk.Finally, the sensing performance of the four-band PIT model is investigated. It is found that the model can produce four transparent windows from beginning to end when the refractive index of the background material is changed. As the refractive index is changed from 1.0 to 1.4, the resonant frequencies in four transparent windows are approximately linearly related to the refractive index. At the same time, the maximum sensitivity of the four transparent windows can reach 326.2625 (THz/RIU) and the maximum figure of merit can arrive at 26.4 (1/RIU), which is higher than those of similar similar sensors in other literatures. This work provides the theoretical support for these models’ potential applications in many areas such as optical storage, absorption, filtering and the design of sensors in infrared band.
      通信作者: 黄铭, huangming@ynu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61461052)
      Corresponding author: Huang Ming, huangming@ynu.edu.cn
    [1]

    Alp A, Ahmet A, Hatice A 2011 Nano Lett. 11 1685Google Scholar

    [2]

    Dong Z G, Liu H, Xu M X 2010 Opt. Express 18 18229Google Scholar

    [3]

    马平平, 张杰, 刘焕焕 2016 物理学报 65 217801Google Scholar

    Ma P P, Zhang J, Liu H H 2016 Acta Phys. Sin. 65 217801Google Scholar

    [4]

    Liu D D, Fu W, Shao J 2019 Plasmonics 14 663Google Scholar

    [5]

    Hu S, Liu D, Yang H L 2019 Opt. Commun. 450 202Google Scholar

    [6]

    Yang S Y, Xia X X, Liu Z 2016 J. Phys. Condens. Matter 28 445002Google Scholar

    [7]

    Cheng S J, Xu Z F, Yao D Y 2019 OSA Continuum 2 2137Google Scholar

    [8]

    Liu J T, Hu H F, Shao X P 2019 Opt. Lett. 44 3829Google Scholar

    [9]

    Zhou J S, Wang W J, Luo C Y 2019 Opt. Express 27 2363Google Scholar

    [10]

    Zhao Z Y, Gu Z D, Zhao H 2019 Opt. Mater. Express 9 1608Google Scholar

    [11]

    Liu Z Y, QiI L M, Sun D D 2019 Materials 12 841Google Scholar

    [12]

    Kim J Y, Soref R, R Walter 2010 Opt. Express 18 17997Google Scholar

    [13]

    Artar A, Ahmet A, Altug H 2011 Nano. Letter 11 1685

    [14]

    Yin X G, Feng T H, Yip S P 2013 Appl. Phys. Lett. 103 021115Google Scholar

    [15]

    Khan A D, Amin M 2018 Opt. Mater. 79 480Google Scholar

    [16]

    Li H M, Xu Y Y 2019 Opt. Mater. Express 5 2107Google Scholar

    [17]

    Tang C, Niu Q S, Wang B X 2018 Plasmonics 14 533Google Scholar

    [18]

    Yu W, Meng H, Chen Z 2018 Opt. Commun. 414 29Google Scholar

    [19]

    Li W, Zhai X, Shang X 2017 Opt. Mater. Express 7 4269Google Scholar

    [20]

    Zhang S, Genov D A, Wang Y 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [21]

    He J N, Wang J Q, Ding P 2015 Plasmonics 10 1115Google Scholar

    [22]

    Zhou X, Ou Y M, Tang B 2017 Opt. Commun. 384 65Google Scholar

    [23]

    Zhao L, Liu H, He Z H 2018 Opt. Express 26 12838Google Scholar

    [24]

    Cong L Q, Tan S Y, Yahiaoui R 2015 Appl. Phys. Lett. 106 031107Google Scholar

    [25]

    Chen C Y, Un L W, Tai N H 2009 Opt. Express 17 15372Google Scholar

    [26]

    Pan W, Yan Y J, Ma Y 2019 Opt. Commun. 431 115Google Scholar

    [27]

    Liu G L, He M X, Tian Z 2013 Appl.Opt. 52 5695Google Scholar

    [28]

    Wang B X, Zhai X, Wang G Z 2015 J. Appl. Phys. 117 014504Google Scholar

  • 图 1  双频段PIT模型结构图 (a)三维空间结构图; (b)二维平面结构图

    Fig. 1.  Schematic diagrams of dual-band PIT model: (a) Three-dimensional space schematic; (b) two-dimensional plane schematic.

    图 2  纳米盘阵列、纳米棒阵列、单频段PIT模型、双频段PIT模型的透射曲线

    Fig. 2.  Transmission spectra of the sole nanodisk array, the sole nanorod array, the single-band PIT model

    图 3  双频段PIT模型在(a) dip A, (b) dip B, (c) dip C, (d) peak D, (e)peak E的电场分布

    Fig. 3.  Distribution of electric field of dual-band PIT model at (a) dip A, (b) dip B, (c) dip C, (d) peak D and (e) peak E.and the dual-band PIT model.

    图 4  改变银纳米盘与银纳米棒、银纳米棒与银纳米棒间隔g时透射率随频率的变化情况

    Fig. 4.  Variation of transmission with frequency of different g.

    图 5  改变银纳米棒长度L时, 透射率随频率的变化情况

    Fig. 5.  Variation of transmission with frequency of different L

    图 6  四频段PIT模型结构图 (a)三维空间结构图; (b)二维平面结构图

    Fig. 6.  Schematic diagrams of four-band PIT model: (a) Three-dimensional space schematic; (b) two-dimensional plane schematic.

    图 7  四频段PIT模型的透射曲线

    Fig. 7.  The transmission of four-band PIT model.

    图 8  两种双频段PIT模型与四频段PIT模型透射率对比

    Fig. 8.  The comparison of transmission between two dual-band PIT models and four-band PIT model.

    图 9  四频段PIT模型在(a) peak A, (b) peak B, (c) peak C, (d) peak D的电场分布

    Fig. 9.  Distribution of electric field of four-band PIT model at (a) peak A, (b) peak B, (c) peak C, (d) peak D.

    图 10  改变上棒长度L2时, 透射率随频率的变化

    Fig. 10.  Variation of transmission with frequency of different L2.

    图 11  改变下棒长度L1时, 透射率随频率的变化

    Fig. 11.  Variation of transmission with frequency of different L1.

    图 12  改变盘与棒之间、棒与棒之间的间隔g时透射率随频率的变化情况

    Fig. 12.  Variation of transmission with frequency of different g.

    图 13  不同背景材料下的透射窗对比

    Fig. 13.  The variation of transmission windows with different background materials.

    图 14  peak A和peak B随背景材料折射率的变化规律

    Fig. 14.  The variation of peak A and peak B with different background materials.

    图 15  peak C和peak D随背景材料折射率的变化规律

    Fig. 15.  The variation of peak C and peak D with different background materials.

    表 1  不同参考文献中传感器模型的FOM参数比较

    Table 1.  Comparison of FOM with reported sensor in different references.

    传感器类型FOM/RIU–1参考文献
    太赫兹超灵敏超材料传感器2.30[24]
    双分离环对混合传感器2.86[25]
    圆形、方形分离环混合传感器7.80[26]
    金属纳米孔阵列传感器10.5[27]
    双频段太赫兹超材料传感器24.6[28]
    四频段银棒、银盘混合传感器26.4本文
    下载: 导出CSV
  • [1]

    Alp A, Ahmet A, Hatice A 2011 Nano Lett. 11 1685Google Scholar

    [2]

    Dong Z G, Liu H, Xu M X 2010 Opt. Express 18 18229Google Scholar

    [3]

    马平平, 张杰, 刘焕焕 2016 物理学报 65 217801Google Scholar

    Ma P P, Zhang J, Liu H H 2016 Acta Phys. Sin. 65 217801Google Scholar

    [4]

    Liu D D, Fu W, Shao J 2019 Plasmonics 14 663Google Scholar

    [5]

    Hu S, Liu D, Yang H L 2019 Opt. Commun. 450 202Google Scholar

    [6]

    Yang S Y, Xia X X, Liu Z 2016 J. Phys. Condens. Matter 28 445002Google Scholar

    [7]

    Cheng S J, Xu Z F, Yao D Y 2019 OSA Continuum 2 2137Google Scholar

    [8]

    Liu J T, Hu H F, Shao X P 2019 Opt. Lett. 44 3829Google Scholar

    [9]

    Zhou J S, Wang W J, Luo C Y 2019 Opt. Express 27 2363Google Scholar

    [10]

    Zhao Z Y, Gu Z D, Zhao H 2019 Opt. Mater. Express 9 1608Google Scholar

    [11]

    Liu Z Y, QiI L M, Sun D D 2019 Materials 12 841Google Scholar

    [12]

    Kim J Y, Soref R, R Walter 2010 Opt. Express 18 17997Google Scholar

    [13]

    Artar A, Ahmet A, Altug H 2011 Nano. Letter 11 1685

    [14]

    Yin X G, Feng T H, Yip S P 2013 Appl. Phys. Lett. 103 021115Google Scholar

    [15]

    Khan A D, Amin M 2018 Opt. Mater. 79 480Google Scholar

    [16]

    Li H M, Xu Y Y 2019 Opt. Mater. Express 5 2107Google Scholar

    [17]

    Tang C, Niu Q S, Wang B X 2018 Plasmonics 14 533Google Scholar

    [18]

    Yu W, Meng H, Chen Z 2018 Opt. Commun. 414 29Google Scholar

    [19]

    Li W, Zhai X, Shang X 2017 Opt. Mater. Express 7 4269Google Scholar

    [20]

    Zhang S, Genov D A, Wang Y 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [21]

    He J N, Wang J Q, Ding P 2015 Plasmonics 10 1115Google Scholar

    [22]

    Zhou X, Ou Y M, Tang B 2017 Opt. Commun. 384 65Google Scholar

    [23]

    Zhao L, Liu H, He Z H 2018 Opt. Express 26 12838Google Scholar

    [24]

    Cong L Q, Tan S Y, Yahiaoui R 2015 Appl. Phys. Lett. 106 031107Google Scholar

    [25]

    Chen C Y, Un L W, Tai N H 2009 Opt. Express 17 15372Google Scholar

    [26]

    Pan W, Yan Y J, Ma Y 2019 Opt. Commun. 431 115Google Scholar

    [27]

    Liu G L, He M X, Tian Z 2013 Appl.Opt. 52 5695Google Scholar

    [28]

    Wang B X, Zhai X, Wang G Z 2015 J. Appl. Phys. 117 014504Google Scholar

计量
  • 文章访问数:  4785
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-04-05
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回