搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al原子在Ni基衬底表面的扩散及团簇的形成

张宇文 邓永和 文大东 赵鹤平 高明

引用本文:
Citation:

Al原子在Ni基衬底表面的扩散及团簇的形成

张宇文, 邓永和, 文大东, 赵鹤平, 高明

Diffusion of Al atoms and growth of Al nanoparticle clusters on surface of Ni substrate

Zhang Yu-Wen, Deng Yong-He, Wen Da-Dong, Zhao He-Ping, Gao Ming
PDF
HTML
导出引用
  • NiAl纳米颗粒具有较高的能量密度和良好的高温力学性能, 铝吸附原子在不同镍基表面上的扩散行为与不同扩散机制对铝在镍基表面沉积生长的影响有待进一步阐明. 本文通过采用肘弹性带和分子动力学结合嵌入原子势的方法, 系统地研究了单个铝吸附原子在镍基表面的扩散行为和纳米颗粒团簇在十面体(DEC)、立方八面体(CUB)和二十面体(ICO)结构上的生长. 研究结果表明: Al吸附原子在三种Ni基底上表面扩散的交换与跳跃两种机制, 最低的Ehrlich-Schwoebel(ES)势垒为0.38 eV (交换CUB{111} → 100})、0.52 eV (交换DEC{111} → 100})和0.52 e V (跳跃ICO{111} → 111}), 从{111}面扩散到{100}面主要以交换机制为主, 而相邻两个{111}面之间的扩散则以跳跃机制为主. 沉积的铝原子首先倾向于扩散到台阶边缘和顶点附近. 随着Al原子数量的增加, 沉积的Al原子开始聚集. 对于Ni团簇上的Al原子, 在较低温度下在镍基底表面沉积Al原子, 可以获得良好的Ni核/Al壳结构. 对于二十面体结构基底, 其对应的核壳团簇的缺陷数最小, 随后为十面体结构和八面体结构. 随着生长温度的增加NiAl纳米粒子的表面逐渐开始合金化.
    NiAl nanoparticles possess high-energy density and good mechanical properties at elevated temperatures, and are considered as an important material. However, the differences in the diffusion behavior of Al adsorbed atoms on different Ni substrate surfaces and the effects of different diffusion mechanisms on the deposition growth of Al atoms on the Ni substrate surface are highly desired to be clarified. Therefore, in the present work, the diffusion behavior of single Al adsorbed atoms and nanoparticle cluster growth on the Ni substrate surface of decahedral (DEC), cuboctahedral(CUB) and icosahedral(ICO) structures are systematically studied by molecular dynamics (MD) throuh analyzing the embedded atom potentialand using the nudged elastic band method. The diffusion barriers of Al adsorbed atoms on three different Ni substrates are calculated by nudged elastic band methodand analyzed, showing that the diffusion barrier is greatly affected by the smoothness of the step edge and the atomic coordination number of substrate as well. The diffusions of Al adsorption atoms on the surfaces of three Ni substrates are realized by two mechanisms, namely exchanging or hoping, and the lowest Ehrlich-Schwoebel (ES) barrier is 0.38 eV for exchange CUB{111} → {100}, 0.52 eV for exchange DEC{111} → {100}, and 0.52 eV for hoping ICO {111} → {111}. The exchanging mechanismsupports Al adatoms diffusing from {111} to {100} facet on the three Ni substrates, while the diffusion between two adjacent {111} facets is mainly driven by the hoping mechanism. On this basis, atom-by-atom growth MD simulation is used to study the structure of the Ni-Al cluster. The deposited Al atoms first tend to diffuse near the edges of the steps and the vertices. The deposited Al atoms begin to aggregate into islands with the increase of their number. For Al atoms on the Ni cluster, a good Ni-core/Al-shell structure can be obtained by depositing Al atoms on the surface of Ni substrate at lower temperatures. In this core-shell structure, Al atoms have a larger surface energy and atom radius compared with Ni atoms. For the ICO substrate, the corresponding defect number of core-shell clusters is smaller than for the CUB and the DEC substrate, which is in good agreement with the diffusion behavior of Al adsorbed atoms on the Ni substrate cluster surface. The surface of Ni-Al bimetal is gradually alloyed with the increase of growth temperature. This study provides a good insight into the diffusion and growth of Al adsorbed atoms on Ni substrates surface on an atomic scale.
      通信作者: 邓永和, dengyonghe1@163.com
    • 基金项目: 国家级-Re-Ni纳米团簇生长机制的解析(51701071)
      Corresponding author: Deng Yong-He, dengyonghe1@163.com
    [1]

    Li T T, He C, Zhang W X, Cheng M 2018 J. Alloys Compd. 752 76Google Scholar

    [2]

    Riccardo F, Julius J, Johnston R L 2008 Chem. Rev. 108 845Google Scholar

    [3]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Surf. Sci. 606 971Google Scholar

    [4]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Cryst. Growth Des. 12 2978Google Scholar

    [5]

    Baletto F, Mottet C, Rapallo A, Rossi G, Ferrando R 2004 Surf. Sci. 566 192

    [6]

    Song P X, Wen D S 2010 J. Phys. Chem. C 114 8688Google Scholar

    [7]

    Ferrer D, Torres-Castro A, Gao X, Sepúlveda-Guzmán S, Ortiz-Méndez U, José-Yacamán M 2007 Nano Lett. 7 1701Google Scholar

    [8]

    Baletto F, Mottet C, Ferrando R 2003 Eur. Phys. J. D 24 233Google Scholar

    [9]

    Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026Google Scholar

    [10]

    Deng L, Hu W Y, Deng H Q, Xiao S F, Tang J F 2011 J. Phys. Chem. C 115 11355

    [11]

    Rapallo A, Rossi G, Ferrando R, et al. 2005 J. Chem. Phys. 122 194308Google Scholar

    [12]

    Henglein A 2000 J. Phys. Chem. B 104 2201Google Scholar

    [13]

    Dai X Y, Hu W Y, Yang J Y, Yi G J 2017 Thin Solid Films 626 178Google Scholar

    [14]

    Yang J Y, Hu W Y, Tang J F, Dai X Y 2013 Comput. Mater. Sci. 74 160Google Scholar

    [15]

    De S, Zhang J G, Luque R, Yan N 2016 Energy Environ Sci. 9 3314Google Scholar

    [16]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504Google Scholar

    [17]

    Yang J Y, Hu W Y, Tang J F 2013 RSC Adv. 4 2155

    [18]

    Shyrokorad D, Kornich G, Buga S 2019 Comput. Mater. Sci. 159 110Google Scholar

    [19]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [20]

    Purja Pun G P, Mishin Y 2009 Philos. Mag. 89 3245Google Scholar

    [21]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [22]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metal. Sin. 53 1659Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Wu B, Zhou J Q, Xue C, Liu H X 2015 Appl. Surf. Sci. 355 1145Google Scholar

    [25]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    Yanting W, Teitel S, Christoph D 2005 J. Chem. Phys. 122 9673

    [28]

    Vitos L, Ruban A V, Skriver H L, Kollar J 1998 Surf. Sci. 411 186Google Scholar

    [29]

    Abbaspour M, Akbarzadeh H, Lotfi S 2018 J. Alloys Compd. 764 323Google Scholar

    [30]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [31]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 物理学报 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [32]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665Google Scholar

    [33]

    Mishin Y, Mehl M J, Papaconstantopoulos D A 2002 Phys. Rev. B 65 392

    [34]

    Ashcroft N W, Mermin N D 1976 Solid State Physics. (Saunders, Philadelphia) pp216–217, 228–229

    [35]

    Pearson W B, Villars P, Calvert L D 1985 ASM 3 258

    [36]

    Rzyman K, Moser Z 2004 Prog. Mater. Sci. 49 581Google Scholar

    [37]

    Ayrault G, Ehrlich G 1974 J. Chem. Phys. 60 281Google Scholar

    [38]

    Ehrlich G, Hudda F G 1966 J. Chem. Phys. 44 1039Google Scholar

    [39]

    Yildirim H, Rahman T S 2009 Phys. Rev. B: Condens. Matter 80 235413Google Scholar

    [40]

    Yang L Y, Gan X L, Xu C, et al. 2019 Comput. Mater. Sci. 156 47Google Scholar

  • 图 1  含有923个原子的CUB (a), DEC (b)和ICO (c)结构示意图, 三种结构是以壳层组成的非晶结构, 其中DEC和CUB由{111}和{100}面组成, 而ICO仅由{111}面组成

    Fig. 1.  CUB (a), DEC (b) and ICO (c) microstructure with 923 atoms. The three clusters are a non-crystalline structure organized in shells. The DEC and CUB consist of {111} and {100} facets, and the ICO has only {111} facets.

    图 2  对于ICO, DEC和CUB结构, 总原子数和表面原子数所占的比例与壳层数的函数关系

    Fig. 2.  For the ICO, DEC and CUB structures, the total atomic number and percent of the surface atoms as a function of the shell number.

    图 3  对于Al 吸附原子在CUB923, DEC923和ICO923结构的Ni基底表面上, 通过跳跃和交换机制, 吸附原子从{111}面向{100}面或向{111}面扩散的路径 (a) Hopping CUB{111} → {100}; (b) Exchange CUB{111} → {100}; (c) Exchange CUB{111} → {111}; (d) Exchange DEC{111} → {100}; (e) Hopping DEC{111} → {100}; (f) Exchange DEC{111} → {111}; (g) Hoping DEC{111} → {111}; (h) Exchange ICO{111} → {111}; (i) Hoping ICO{111} → {111}. 橙色的球表示铝原子, 灰色的球表示镍原子

    Fig. 3.  For the Al adatoms on the surfaces of the Ni CUB923, DEC923, and ICO923, the diffusion path of the adatom from the {111} facet to the {100} facet or to the {111} facet via the hopping and exchange mechanisms: (a) Hopping CUB{111} → {100}; (b) Exchange CUB{111} → {100}; (c) Exchange CUB{111} → {111}; (d) Exchange DEC{111} → {100}; (e) Hopping DEC{111} → {100}; (f) Exchange DEC{111} → {111}; (g) Hoping DEC{111} → {111}; (h) Exchange ICO{111} → {111}; (i) Hoping ICO{111} → {111}. The orange balls show the Al adatoms and the gray balls show the Ni atoms.

    图 4  Al吸附原子在Ni CUB923基底表面扩散对应的能量势垒曲线 (a) {111} → {100}; (b) {111} → {111}. 扩散路径如图3(a)图3(c)所示

    Fig. 4.  For the Al adatom on the surface of the Ni CUB923, the system energies as a function of reaction coordinate corresponding to the diffusion path shown in Fig.3(a)-Fig.3(c): (a) {111} → {100}; (b) {111} → {111}.

    图 5  Al吸附原子在Ni DEC923基底表面扩散对应的能量势垒曲线 (a) {111} → {100}; (b) {111} → {111}. 扩散路径如图3(d)图3(g)所示

    Fig. 5.  For the Al adatom on the surface of the NiDEC923, the system energies as a function of reaction coordinate corresponding to the diffusion path shown in Fig.3(d)-Fig.3(g): (a) {111} → {100}; (b) {111} → {111}.

    图 6  Al吸附原子在Ni ICO923基底表面扩散对应的能量势垒曲线, 扩散路径如图3(h)图3(i)所示

    Fig. 6.  For the Al adatom on the surface of the Ni ICO923, the system energies as a function of reaction coordinate corresponding to the diffusion path shown in Fig. 3(h) and Fig.3(i).

    图 7  T = 300 K, 在不同的Ni基底表面生长, $ N_{\rm Ni}^{\rm surf} $$ N_{\rm Al}^{\rm bulk} $与沉积的Al原子数的函数关系

    Fig. 7.  On the different substrates of Ni core, the $ N_{\rm Ni}^{\rm surf} $ and $ N_{\rm Al}^{\rm bulk} $ as functions of the deposited Al atoms at T = 300 K.

    图 8  T = 300 k, Al原子在Ni ICO923基底上的生长序列 (a) Ndep = 100; (b) Ndep = 200; (c) Ndep = 300; (d) Ndep = 400; (e) Ndep = 500. 橙色和灰色的球分别表示Al原子和Ni原子

    Fig. 8.  Growth sequence of Al atoms growth on the ICO923 of Fe at T = 300 k: (a) Ndep = 100; (b) Ndep = 200; (c) Ndep = 300; (d) Ndep = 400; (e) Ndep = 500. The orange and gray balls show the Al atoms and the Ni atoms, respectively.

    图 9  T = 300, 500, 700和900 K, Al原子在Ni ICO923基底表面生长, $ N_{\rm Ni}^{\rm surf} $$ N_{\rm Al}^{\rm bulk} $作为沉积的Al原子数的函数

    Fig. 9.  At T = 300, 500, 700 and 900 K, for the growth of Al atoms on the ICO923 of Ni, the $ N_{\rm Ni}^{\rm surf} $ and $ N_{\rm Al}^{\rm bulk} $ as functions of the deposited Al atoms.

    图 10  异质配位数(NAl-Ni)随温度的变化, 插图对应于每个生长温度下最终构型. 橙色的球表示Al原子, 灰色的球表示Ni原子

    Fig. 10.  The variation of hetero-coordination number (NAl-Ni) with temperature, and the inset correspond to the final configuration at each growth temperature. The orange and gray balls show the Al atoms and the Ni atoms, respectively.

    表 1  金属Ni和金属Al的表面能(Esurf). 列出了对应的第一性原理(FP)[28]数据

    Table 1.  The surface energy (Esurf) for the two different material of Ni and Al. For comparison, the first principle (FP) calculations[28] are listed.

    元素晶体结构Esurf/mJ·m–2
    晶面本工作FP[25]
    NiFCC(111)18752011
    (100)19642426
    (110)21482368
    AlFCC(111)933939
    (100)9941081
    (110)10631090
    下载: 导出CSV

    表 2  NiAl不同化合物的形成热(∆H). 为了对比列出了对应的第一性原理[32](FP)和其他理论方法[33] (EMP)以及对应实验结果[34-36] (EXP)

    Table 2.  The calculated heat of formation (∆H), structural of NiAl in varying crystal structures. For comparison, the first-principle (FP)[32] and other calculations with empirical methods (EMP)[33] and available experimental values (EXP)[34-36] are also listed.

    化合物结构H/eV·atom–1
    本工作FPEMPEXP
    NiAlB2–0.61–0.67–0.67
    NiAl3L12–0.26
    Ni3AlL12–0.45–0.44–0.46, -0.48–0.49, -0.43
    下载: 导出CSV
  • [1]

    Li T T, He C, Zhang W X, Cheng M 2018 J. Alloys Compd. 752 76Google Scholar

    [2]

    Riccardo F, Julius J, Johnston R L 2008 Chem. Rev. 108 845Google Scholar

    [3]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Surf. Sci. 606 971Google Scholar

    [4]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Cryst. Growth Des. 12 2978Google Scholar

    [5]

    Baletto F, Mottet C, Rapallo A, Rossi G, Ferrando R 2004 Surf. Sci. 566 192

    [6]

    Song P X, Wen D S 2010 J. Phys. Chem. C 114 8688Google Scholar

    [7]

    Ferrer D, Torres-Castro A, Gao X, Sepúlveda-Guzmán S, Ortiz-Méndez U, José-Yacamán M 2007 Nano Lett. 7 1701Google Scholar

    [8]

    Baletto F, Mottet C, Ferrando R 2003 Eur. Phys. J. D 24 233Google Scholar

    [9]

    Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026Google Scholar

    [10]

    Deng L, Hu W Y, Deng H Q, Xiao S F, Tang J F 2011 J. Phys. Chem. C 115 11355

    [11]

    Rapallo A, Rossi G, Ferrando R, et al. 2005 J. Chem. Phys. 122 194308Google Scholar

    [12]

    Henglein A 2000 J. Phys. Chem. B 104 2201Google Scholar

    [13]

    Dai X Y, Hu W Y, Yang J Y, Yi G J 2017 Thin Solid Films 626 178Google Scholar

    [14]

    Yang J Y, Hu W Y, Tang J F, Dai X Y 2013 Comput. Mater. Sci. 74 160Google Scholar

    [15]

    De S, Zhang J G, Luque R, Yan N 2016 Energy Environ Sci. 9 3314Google Scholar

    [16]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504Google Scholar

    [17]

    Yang J Y, Hu W Y, Tang J F 2013 RSC Adv. 4 2155

    [18]

    Shyrokorad D, Kornich G, Buga S 2019 Comput. Mater. Sci. 159 110Google Scholar

    [19]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [20]

    Purja Pun G P, Mishin Y 2009 Philos. Mag. 89 3245Google Scholar

    [21]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [22]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metal. Sin. 53 1659Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Wu B, Zhou J Q, Xue C, Liu H X 2015 Appl. Surf. Sci. 355 1145Google Scholar

    [25]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    Yanting W, Teitel S, Christoph D 2005 J. Chem. Phys. 122 9673

    [28]

    Vitos L, Ruban A V, Skriver H L, Kollar J 1998 Surf. Sci. 411 186Google Scholar

    [29]

    Abbaspour M, Akbarzadeh H, Lotfi S 2018 J. Alloys Compd. 764 323Google Scholar

    [30]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [31]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 物理学报 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [32]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665Google Scholar

    [33]

    Mishin Y, Mehl M J, Papaconstantopoulos D A 2002 Phys. Rev. B 65 392

    [34]

    Ashcroft N W, Mermin N D 1976 Solid State Physics. (Saunders, Philadelphia) pp216–217, 228–229

    [35]

    Pearson W B, Villars P, Calvert L D 1985 ASM 3 258

    [36]

    Rzyman K, Moser Z 2004 Prog. Mater. Sci. 49 581Google Scholar

    [37]

    Ayrault G, Ehrlich G 1974 J. Chem. Phys. 60 281Google Scholar

    [38]

    Ehrlich G, Hudda F G 1966 J. Chem. Phys. 44 1039Google Scholar

    [39]

    Yildirim H, Rahman T S 2009 Phys. Rev. B: Condens. Matter 80 235413Google Scholar

    [40]

    Yang L Y, Gan X L, Xu C, et al. 2019 Comput. Mater. Sci. 156 47Google Scholar

  • [1] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] 邓永和, 张宇文, 谭恒博, 文大东, 高明, 吴安如. NiCu双金属纳米粒子的表面偏析、结构特征与扩散. 物理学报, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [6] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [7] 王一, 丁召, 杨晨, 罗子江, 王继红, 李军丽, 郭祥. 低温下InAs纳米结构在GaAs(001)表面形成机制的研究. 物理学报, 2021, 70(19): 193601. doi: 10.7498/aps.70.20210645
    [8] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [9] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [10] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [11] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [12] 钱泽宇, 张林. 熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟. 物理学报, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [13] 汪志刚, 黄娆, 文玉华. Pt-Au核-壳结构纳米粒子热稳定性的分子动力学研究. 物理学报, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [14] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [15] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响. 物理学报, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [16] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [17] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [18] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [19] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [20] 孙大亮, 于锡玲, 王 燕, 顾庆天. TGS晶体生长多形性和其表面扩散生长机制. 物理学报, 2000, 49(9): 1873-1877. doi: 10.7498/aps.49.1873
计量
  • 文章访问数:  8720
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-04-17
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回