搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性

龙泽 夏晓川 石建军 刘俊 耿昕蕾 张赫之 梁红伟

引用本文:
Citation:

基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性

龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟

Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal

Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei
PDF
HTML
导出引用
  • 本文制备了基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件, 对该器件进行了温度特性I-V曲线测试. 器件表现出了良好的二极管特性, 随着温度从300 K升高至473 K, 势垒高度从1.08 eV上升至1.35 eV, 理想因子从1.32降低至1.19, 二者表现出了较强的温度依赖特性, 这表明器件的肖特基势垒存在势垒高度不均匀的问题. 串联电阻随温度升高而降低, 这主要是热激发载流子浓度升高导致的. 本文利用势垒高度的高斯分布对器件的温度特性进行了修正, 修正后的势垒高度为1.54 eV, 理查孙常数为26.35 A·cm–2·K–2, 更接近理论值, 这表明利用高斯分布势垒高度的热电子发射模型能够很好地解释Au/Ni/β-Ga2O3肖特基二极管的I-V温度特性问题, 这种方法更适合用来测量β-Ga2O3肖特基二极管的电学参数.
    In this paper, a Ni/Au vertical structure Schottky diode based on mechanically exfoliated β-Ga2O3 is fabricated. The temperature dependent characteristics of I-V curves are measured. The device shows a good rectifying behavior. As the temperature increases from 300 K to 473 K, the barrier height increases from 1.08 eV to 1.35 eV, and the ideal factor decreases from 1.32 to 1.19. Both of them show strong temperature dependence, which indicates that the Schottky barrier of the device is inhomogeneous. The device has a double exponential forward I-V characteristic curve, which may be related to crystal defects, surface states, surface energy band bending and the effect of mechanical exfoliation from the crystal surface. Through Cheung's method and Norde's method, the series resistances and barrier heights of the device at different temperatures are extracted. It is found that the parameters extracted by the Norde's method are in good agreement with the values obtained from the forward I-V curve. The series resistance decreases with temperature increasing, which is mainly caused by the increase of the concentration of thermally excited carriers. In this paper, the temperature characteristics of the device are modified by the Gauss distribution of the barrier height. The corrected barrier height is 1.54 eV and Richardson's constant is 26.35 A·cm–2·K–2, which is closer to the theoretical value. It shows that the I-V temperature characteristics of Au/Ni/β-Ga2O3 Schottky diodes can be described by the thermionic emission model of the Gauss distribution barrier height accurately. There are a lot of surface states on the surface of Ga2O3 single crystal obtained by Mechanical exfoliation, which has a great influence on the Schottky contact of the device and may lead to the inhomogeneity of Schottky barriers. At the same time, due to mechanical exploiation, the surface of gallium oxide single crystal material is not completely continuous, and the single crystal surface has layered or island structure. This will also cause the inhomogeneous Schottky barrier height. Considering the influence of inhomogeneous barrier on Schottky diode, the method of measuring the temperature characteristics is more suitable to extracting the electrical parameters of β-Ga2O3 Schottky diodes than the method of fitting I-V forward curve by TE model.
      通信作者: 梁红伟, hwliang@dlut.edu.cn
    • 基金项目: 其它-大连市科技创新基金(2018J12GX060)
      Corresponding author: Liang Hong-Wei, hwliang@dlut.edu.cn
    [1]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [2]

    Montes J, Yang C, Fu H, Yang T H, Fu K, Chen H, Zhou J, Huang X, Zhao Y 2019 Appl. Phys. Lett. 114 162103Google Scholar

    [3]

    Barman S K, Huda M N 2019 Phys. Status Solidi-R. 13 1800554Google Scholar

    [4]

    Qian L X, Wang Y, Wu Z H, Sheng T, Liu X Z 2017 Vacuum 140 106Google Scholar

    [5]

    Wang X, Liu Z, Zhi Y, Li S, Wu Z, Li P, Tang W 2019 Vacuum 166 79Google Scholar

    [6]

    Manandhar S, Battu A K, Devaraj A, Shutthanandan V, Thevuthasan S, Ramana C V 2020 Sci. Rep. 10 178Google Scholar

    [7]

    Yang J, Ren F, Tadjer M, Pearton S, Kuramata A 2018 ECS J. Solid State Sc. 7 Q92Google Scholar

    [8]

    Galazka Z, Irmscher K, Schewski R, Hanke I M, Pietsch M, Ganschow S, Klimm D, Dittmar A, Fiedler A, Schroeder T, Bickermann M 2020 J. Cryst. Growth 529 Unsp 125297

    [9]

    Tang H L, He N T, Zhang H, Liu B, Zhu Z C, Xu M X, Chen L, Liu J L, Ouyang X P, Xu J 2020 Crystengcomm 22 924Google Scholar

    [10]

    Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H 2006 Thin Solid Films 496 37Google Scholar

    [11]

    Wang D, He L N, Le Y, Feng X J, Luan C N, Xiao H D, Ma J 2020 Ceram. Int. 46 4568Google Scholar

    [12]

    Matsuzaki K, Yanagi H, Kamiya T, Hiramatsu H, Nomura K, Hirano M, Hosono H 2006 Appl. Phys. Lett. 88 92106Google Scholar

    [13]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [14]

    Konishi K, Goto K, Murakami H, Kumagai Y, Higashiwaki M 2017 Appl. Phys. Lett. 110 103506Google Scholar

    [15]

    Pearton S J, Ren F, Tadjer M, Kim J 2018 J. Appl. Phys. 124 220901Google Scholar

    [16]

    Yao Y, Gangireddy R, Kim J, Das K K, Porter L M 2017 J. Vac. Sci. Technol., B 35 03D113Google Scholar

    [17]

    Cheung S K, Cheung N W 1986 Appl. Phys. Lett. 49 85Google Scholar

    [18]

    Norde H 1979 J. Appl. Phys. 50 5052Google Scholar

    [19]

    He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar

    [20]

    Ahn S, Ren F, Yuan L, Pearton S J, Kuramata A 2017 ECS J. Solid State Sc. 6 P68Google Scholar

    [21]

    Jian G, He Q, Mu W, Fu B, Dong H, Qin Y, Zhang Y, Xue H, Long S, Jia Z, Lv H, Liu Q, Tao X, Liu M 2018 AIP Adv. 8 015316Google Scholar

    [22]

    Fares C, Ren F, Pearton S J 2018 ECS J. Solid State Sc. 8 Q3007Google Scholar

    [23]

    Reddy P R S, Janardhanam V, Shim K H, Reddy V R, Lee S N, Park S J, Choi C J 2020 Vacuum 171 109012Google Scholar

    [24]

    施敏, 伍国珏(耿莉, 张瑞智译) 2008 半导体器件物理(第3版) (西安: 西安交通大学出版社) 第118−119页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp118−119 (in Chinese)

    [25]

    Shi J J, Xia X C, Liang H W, Abbas Q, Liu J, Zhang H Q, Liu Y 2019 J. Mater. Sci.-Mater. Electron. 30 3860Google Scholar

    [26]

    Ohdomari I, Tu K N 1980 J. Appl. Phys. 51 3735Google Scholar

    [27]

    Tung R T 1992 Phys. Rev. B 45 13509Google Scholar

    [28]

    Güçlü Ç Ş, Özdemir A F, Altindal Ş 2016 Appl. Phys. A 122 1032.1Google Scholar

    [29]

    Marıl E, Altındal Ş, Kaya A, Koçyiğit S, Uslu İ 2015 Philos. Mag. 95 1049Google Scholar

    [30]

    Garrido-Alzar C L 1997 Renewable Energy 10 4Google Scholar

    [31]

    Janardhanam V, Jyothi I, Sekhar Reddy P R, Cho J, Cho J M, Choi C J, Lee S N, Rajagopal Reddy V 2018 Superlattices Microstruct. 120 508Google Scholar

    [32]

    Jyothi I, Seo M W, Janardhanam V, Shim K H, Lee Y B, Ahn K S, Choi C J 2013 J. Alloys Compd. 556 252Google Scholar

    [33]

    Mönch W 2007 Appl. Phys. A 87 359Google Scholar

    [34]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [35]

    Shen Y, Feng Q, Zhang K, Hu Z, Yan G, Cai Y, Mu W, Jia Z, Zhang C, Zhou H, Zhang J, Lian X, Lai Z, Hao Y 2019 Superlattices Microstruct. 133 106179Google Scholar

    [36]

    施敏, 伍国珏 (耿莉, 张瑞智译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第132−133页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp132−133 (in Chinese)

    [37]

    Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S 2013 IEEE Electron Device Lett. 34 493Google Scholar

    [38]

    Werner J H, Güttler H H 1991 J. Appl. Phys. 69 1522Google Scholar

  • 图 1  (a), (b), (c) 机械剥离氧化镓单晶材料; (d) Au/Ni/β-Ga2O3肖特基二极管结构示意图

    Fig. 1.  (a), (b), (c) Mechanically exfoliated beta-Ga2O3 single crystal; (d) schematic cross section of Au/Ni/β-Ga2O3 Schottky barrier diode.

    图 2  肖特基二极管的I-V温度特性曲线 (a) 正向; (b) 反向

    Fig. 2.  Temperature dependent I-V characteristic curves of Schottky barrier diode: (a) Forward curves; (b) reverse curves.

    图 3  I-V温度特性曲线提取的 (a) 势垒高度; (b) 理想因子; (c) 阈值电压

    Fig. 3.  The parameters from temperature dependent I-V characteristic curves: (a)Barrier height; (b) ideal factor; (c) threshold voltage.

    图 4  不同温度下势垒高度与理想因子依赖关系 (a) Barrier 1; (b) Barrier 2

    Fig. 4.  Plot of barrier height as a function of ideal factor obtained at various temperatures: (a) Barrier 1; (b) Barrier 2

    图 5  (a) C-V特性曲线; (b) 频率为100 kHz的1/C 2-V曲线

    Fig. 5.  (a) C-V characteristic curves; (b) 1/C 2-V characteristic curve of 100 kHz.

    图 6  300 K温度下的dV/dlnI-V曲线

    Fig. 6.  dV/dlnI-V curve at the temperature of 300 K.

    图 7  H(I)-I (a) 温度特性曲线; (b) 不同温度时的串联电阻和势垒高度

    Fig. 7.  H(I)-I (a) Temperature dependent curves; (b) the resistance and barrier height at various temperatures.

    图 8  (a) F(V)-V 温度特性曲线; (b) 不同温度时的串联电阻和势垒高度

    Fig. 8.  (a) F(V)-V temperature dependent curves; (b) the resistance and barrier height at various temperatures.

    图 9  肖特基二极管的理查孙图

    Fig. 9.  Richardson's plot of Schottky barrier diode.

    图 10  (a) $ {\varphi }_{{\rm{a}}{\rm{p}}} -\dfrac{1}{2 kT} $图像; (b) 高斯分布修正后的理查孙图

    Fig. 10.  (a) The plot of $ {\varphi }_{{\rm{a}}{\rm{p}}} - \dfrac{1}{2 kT} $; (b) Richardson's plot after Gaussian distribution processing.

    表 1  I-V温度特性曲线提取数据表

    Table 1.  The parameters from temperature dependent I-V characteristic curves.

    温度/K势垒高度/eV理想因子n阈值电压/V
    Barrier 1Barrier 2Barrier 1Barrier 2Barrier 1Barrier 2
    3001.011.081.322.111.021.77
    3231.001.171.741.811.281.64
    3481.081.231.461.711.161.61
    3731.131.251.361.691.111.58
    3981.171.291.371.671.141.59
    4231.221.301.281.651.101.56
    4481.271.321.241.711.091.59
    4731.311.351.191.691.061.58
    下载: 导出CSV

    表 2  H(I)-IF(V)-V曲线提取数据表

    Table 2.  The parameters from H(I)-I curves and F(V)-V curves.

    温度/K势垒高度/eV串联电阻/Ω
    H(I)-IF(V)-VH(I)-IF(V)-V
    3000.971.07386.6212299.25
    3230.931.10136.386184.64
    3481.001.15143.323086.28
    3731.021.19141.791603.53
    3981.041.23150.50838.20
    4231.051.27157.03379.21
    4481.061.29181.14381.55
    4731.081.34189.04157.33
    下载: 导出CSV
  • [1]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [2]

    Montes J, Yang C, Fu H, Yang T H, Fu K, Chen H, Zhou J, Huang X, Zhao Y 2019 Appl. Phys. Lett. 114 162103Google Scholar

    [3]

    Barman S K, Huda M N 2019 Phys. Status Solidi-R. 13 1800554Google Scholar

    [4]

    Qian L X, Wang Y, Wu Z H, Sheng T, Liu X Z 2017 Vacuum 140 106Google Scholar

    [5]

    Wang X, Liu Z, Zhi Y, Li S, Wu Z, Li P, Tang W 2019 Vacuum 166 79Google Scholar

    [6]

    Manandhar S, Battu A K, Devaraj A, Shutthanandan V, Thevuthasan S, Ramana C V 2020 Sci. Rep. 10 178Google Scholar

    [7]

    Yang J, Ren F, Tadjer M, Pearton S, Kuramata A 2018 ECS J. Solid State Sc. 7 Q92Google Scholar

    [8]

    Galazka Z, Irmscher K, Schewski R, Hanke I M, Pietsch M, Ganschow S, Klimm D, Dittmar A, Fiedler A, Schroeder T, Bickermann M 2020 J. Cryst. Growth 529 Unsp 125297

    [9]

    Tang H L, He N T, Zhang H, Liu B, Zhu Z C, Xu M X, Chen L, Liu J L, Ouyang X P, Xu J 2020 Crystengcomm 22 924Google Scholar

    [10]

    Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H 2006 Thin Solid Films 496 37Google Scholar

    [11]

    Wang D, He L N, Le Y, Feng X J, Luan C N, Xiao H D, Ma J 2020 Ceram. Int. 46 4568Google Scholar

    [12]

    Matsuzaki K, Yanagi H, Kamiya T, Hiramatsu H, Nomura K, Hirano M, Hosono H 2006 Appl. Phys. Lett. 88 92106Google Scholar

    [13]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [14]

    Konishi K, Goto K, Murakami H, Kumagai Y, Higashiwaki M 2017 Appl. Phys. Lett. 110 103506Google Scholar

    [15]

    Pearton S J, Ren F, Tadjer M, Kim J 2018 J. Appl. Phys. 124 220901Google Scholar

    [16]

    Yao Y, Gangireddy R, Kim J, Das K K, Porter L M 2017 J. Vac. Sci. Technol., B 35 03D113Google Scholar

    [17]

    Cheung S K, Cheung N W 1986 Appl. Phys. Lett. 49 85Google Scholar

    [18]

    Norde H 1979 J. Appl. Phys. 50 5052Google Scholar

    [19]

    He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar

    [20]

    Ahn S, Ren F, Yuan L, Pearton S J, Kuramata A 2017 ECS J. Solid State Sc. 6 P68Google Scholar

    [21]

    Jian G, He Q, Mu W, Fu B, Dong H, Qin Y, Zhang Y, Xue H, Long S, Jia Z, Lv H, Liu Q, Tao X, Liu M 2018 AIP Adv. 8 015316Google Scholar

    [22]

    Fares C, Ren F, Pearton S J 2018 ECS J. Solid State Sc. 8 Q3007Google Scholar

    [23]

    Reddy P R S, Janardhanam V, Shim K H, Reddy V R, Lee S N, Park S J, Choi C J 2020 Vacuum 171 109012Google Scholar

    [24]

    施敏, 伍国珏(耿莉, 张瑞智译) 2008 半导体器件物理(第3版) (西安: 西安交通大学出版社) 第118−119页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp118−119 (in Chinese)

    [25]

    Shi J J, Xia X C, Liang H W, Abbas Q, Liu J, Zhang H Q, Liu Y 2019 J. Mater. Sci.-Mater. Electron. 30 3860Google Scholar

    [26]

    Ohdomari I, Tu K N 1980 J. Appl. Phys. 51 3735Google Scholar

    [27]

    Tung R T 1992 Phys. Rev. B 45 13509Google Scholar

    [28]

    Güçlü Ç Ş, Özdemir A F, Altindal Ş 2016 Appl. Phys. A 122 1032.1Google Scholar

    [29]

    Marıl E, Altındal Ş, Kaya A, Koçyiğit S, Uslu İ 2015 Philos. Mag. 95 1049Google Scholar

    [30]

    Garrido-Alzar C L 1997 Renewable Energy 10 4Google Scholar

    [31]

    Janardhanam V, Jyothi I, Sekhar Reddy P R, Cho J, Cho J M, Choi C J, Lee S N, Rajagopal Reddy V 2018 Superlattices Microstruct. 120 508Google Scholar

    [32]

    Jyothi I, Seo M W, Janardhanam V, Shim K H, Lee Y B, Ahn K S, Choi C J 2013 J. Alloys Compd. 556 252Google Scholar

    [33]

    Mönch W 2007 Appl. Phys. A 87 359Google Scholar

    [34]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [35]

    Shen Y, Feng Q, Zhang K, Hu Z, Yan G, Cai Y, Mu W, Jia Z, Zhang C, Zhou H, Zhang J, Lian X, Lai Z, Hao Y 2019 Superlattices Microstruct. 133 106179Google Scholar

    [36]

    施敏, 伍国珏 (耿莉, 张瑞智译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第132−133页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp132−133 (in Chinese)

    [37]

    Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S 2013 IEEE Electron Device Lett. 34 493Google Scholar

    [38]

    Werner J H, Güttler H H 1991 J. Appl. Phys. 69 1522Google Scholar

  • [1] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240186
    [2] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [3] 武鹏, 朱宏宇, 吴金星, 张涛, 张进成, 郝跃. 基于湿法腐蚀凹槽阳极的低漏电高耐压AlGaN/GaN肖特基二极管. 物理学报, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [4] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [5] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [6] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [8] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [9] 宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪. 基于晶向优化和Sn合金化技术的一种2.45 G弱能量微波无线输能用Ge基肖特基二极管. 物理学报, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
    [10] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [11] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [12] 杜园园, 张春雷, 曹学蕾. 基于4H-SiC肖特基势垒二极管的射线探测器. 物理学报, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [13] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [14] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [15] 翟东媛, 赵毅, 蔡银飞, 施毅, 郑有炓. 沟槽形状对硅基沟槽式肖特基二极管电学特性的影响. 物理学报, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [16] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [17] 杨丽侠, 杜 磊, 包军林, 庄奕琪, 陈晓东, 李群伟, 张 莹, 赵志刚, 何 亮. 60Co γ-射线辐照对肖特基二极管1/f噪声的影响. 物理学报, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [18] 王艳新, 张琦锋, 孙 晖, 常艳玲, 吴锦雷. ZnO纳米线二极管发光器件制备及特性研究. 物理学报, 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [19] 郭大勃, 元 光, 宋翠华, 顾长志, 王 强. 碳纳米管的变温场发射. 物理学报, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [20] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
计量
  • 文章访问数:  6001
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-04-15
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回