搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeSe2中强各向异性偏振相关的非线性光学响应

欧阳昊 胡思扬 申曼玲 张晨希 程湘爱 江天

引用本文:
Citation:

GeSe2中强各向异性偏振相关的非线性光学响应

欧阳昊, 胡思扬, 申曼玲, 张晨希, 程湘爱, 江天

Polarization-dependent nonlinear optical response in GeSe2

Ouyang Hao, Hu Si-Yang, Shen Man-Ling, Zhang Chen-Xi, Cheng Xiang-Ai, Jiang Tian
PDF
HTML
导出引用
  • 二硒化锗(GeSe2)作为一种层状IV-VI族半导体, 具有面内各向异性结构及宽能带间隙, 表现出了独特的光、电及热学性能. 本文利用偏振拉曼光谱和线性吸收谱分别对GeSe2纳米片的晶轴取向和能带特性进行表征, 并以此为依据采用微区I扫描系统研究了GeSe2在共振能带附近的光学非线性吸收机制. 结果表明, GeSe2中非线性吸收机制为饱和吸收与激发态吸收的叠加, 且对入射光偏振与波长均有强烈的依赖. 近共振激发(450 nm)条件下, 激发态吸收对偏振的依赖程度比较大, 随着入射光偏振的不同, 非线性调制深度可由4.6%变化至9.9%; 而非共振激发(400 nm)时, 该调制深度仅由7.0%变化至9.7%. 同时, 相比于饱和吸收, 激发态吸收的偏振依赖程度受远离共振激发波长的影响而变化更大.
    Germanium diselenide (GeSe2), a layered IV-VI semiconductor, has an in-plane anisotropic structure and a wide band gap, exhibiting unique optical, electrical, and thermal properties. In this paper, polarization axis Raman spectrum and linear absorption spectrum are used to characterize the crystal axis orientation and energy band characteristics of GeSe2 flake, respectively. Based on the results, a micro-domain I scan system is used to study the optical nonlinear absorption mechanism of GeSe2 near the resonance band. The results show that the nonlinear absorption mechanism in GeSe2 is a superposition of saturation absorption and excited state absorption, and is strongly dependent on the polarization and wavelength of incident light. Under near-resonance excitation (450 nm), the excited state absorption is more greatly dependent on polarization. With different polarizations of incident light, the modulation depth can be changed from 4.6% to 9.9%; for non-resonant excitation (400 nm), the modulation depth only changes from 7.0% to 9.7%. At the same time, compared with saturation absorption, the polarization-dependent excited state absorption is greatly affected by the distance away from the resonance excitation wavelength.
      通信作者: 江天, tjiang@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11802339, 11805276, 61805282, 61801498, 11804387, 11902358)、国防科技大学科学研究基金(批准号: ZK16-03-59, ZK18-01-03, ZK18-03-36, ZK18-03-22)、湖南省国家科学基金(批准号: 2016JJ1021)、脉冲功率激光技术国家重点实验室开放董事基金(批准号: SKL2018ZR05)、湖南省高能技术重点实验室开放研究基金(批准号: GNJGJS03)、激光与物质相互作用国家重点实验室开放基金(批准号: SKLLIM1702)和青年人才培养项目(批准号: 17-JCJQ-QT-004)资助的课题
      Corresponding author: Jiang Tian, tjiang@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11802339, 11805276, 61805282, 61801498, 11804387, 11902358), the Scientific Researches Foundation of National University of Defense Technology, China (Grant Nos. ZK16-03-59, ZK18-01-03, ZK18-03-36, ZK18-03-22), the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ1021), the Open Director Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. SKL2018ZR05), the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology, China (Grant No. GNJGJS03), the Opening Foundation of State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1702), and the Youth Talent Lifting Project, China (Grant No. 17-JCJQ-QT-004)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotechnol. 9 825Google Scholar

    [3]

    Zhang J, Ouyang H, Zheng X, You J, Chen R, Zhou T, Sui Y, Liu Y, Cheng X, Jiang T 2018 Opt. Lett. 43 243Google Scholar

    [4]

    Wang R, Ruzicka B A, Kumar N, Bellus M Z, Chiu H Y, Zhao H 2012 Phys. Rev. B 86 045406Google Scholar

    [5]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [6]

    Hu Y, Jiang T, Zhou J, Hao H, Sun H, Ouyang H, Tong M, Tang Y, Li H, You J, Zheng X, Xu Z, Cheng X 2019 Nano Energy 68 104280Google Scholar

    [7]

    Tang Y, Zhang Y, Ouyang H, Zhao M, Hao H, Wei K, Li H, Sui Y, You J, Zheng X, Xu Z, Cheng X, Shi L, Jiang T 2020 Laser Photonics Rev. 1900419Google Scholar

    [8]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [9]

    Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2013 Phys. Rev. Lett. 111 136802Google Scholar

    [10]

    Zhang J, Jiang T, Zhou T, Ouyang H, Zhang C X, Xin Z, Wang Z Y, Cheng X a 2018 Photonics Res. 6 14Google Scholar

    [11]

    Jiang T, Miao R, Zhao J, Xu Z, Zhou T, Wei K, You J, Zheng X, Wang Z, Cheng X A 2019 Chin. Opt. Lett. 17 020005Google Scholar

    [12]

    刘畅, 刘祥瑞 2019 物理学报 68 175Google Scholar

    Liu C, Liu X R 2019 Acta Phys. Sin. 68 175Google Scholar

    [13]

    Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572Google Scholar

    [14]

    Youngblood N, Peng R, Nemilentsau A, Low T, Li M 2016 ACS Photonics 4 8Google Scholar

    [15]

    Zhou Y, Zhang M, Guo Z, Miao L, Han S-T, Wang Z, Zhang X, Zhang H, Peng Z 2017 Mater. Horiz. 4 997Google Scholar

    [16]

    Bao Q, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327Google Scholar

    [19]

    Yang Y, Wang X, Liu S C, Li Z, Sun Z, Hu C, Xue D J, Zhang G, Hu J S 2019 Adv. Sci. 6 1801810Google Scholar

    [20]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [21]

    Zheng J, Yang Z, Si C, Liang Z, Chen X, Cao R, Guo Z, Wang K, Zhang Y, Ji J, Zhang M, Fan D, Zhang H 2017 ACS Photonics 4 1466Google Scholar

    [22]

    Tan D Z, Lim H E, Wang F, Mohamed N B, Mouri S, Zhang W J, Miyauchi Y H, Ohfuchi M, Matsuda K 2016 Nano Res. 10 546Google Scholar

    [23]

    黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花 2016 物理学报 65 063102Google Scholar

    Huang D H, Wan M J, Wang F H, Yang J S, Cao Q L, Wang J H 2016 Acta Phys. Sin. 65 063102Google Scholar

    [24]

    Zhang C X, Ouyang H, Miao R L, Sui Y Z, Hao H, Tang Y X, You J, Zheng X, Xu Z J, Cheng X A, Jiang T 2019 Adv. Opt. Mater. 7 1900631Google Scholar

    [25]

    Aslan O B, Chenet D A, van der Zande A M, Hone J C, Heinz T F 2015 ACS Photonics 3 96Google Scholar

    [26]

    Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P, Wang H 2015 Nano Res. 8 3651Google Scholar

    [27]

    Jang H, Ryder C R, Wood J D, Hersam M C, Cahill D G 2017 Adv. Mater. 29 1700650Google Scholar

    [28]

    Villegas C E P, Rocha A R, Marini A 2016 Phys. Rev. B 94 134306Google Scholar

    [29]

    Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [30]

    Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S, Castro Neto A H 2016 Phys. Rev. B 94 155428Google Scholar

    [31]

    魏钟鸣, 夏建白 2019 物理学报 68 48Google Scholar

    Wei Z M, Xia J B 2019 Acta Phys. Sin. 68 48Google Scholar

    [32]

    Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858Google Scholar

    [33]

    Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150Google Scholar

    [34]

    Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1900622Google Scholar

    [35]

    Cao M, Cheng B, Xiao L, Zhao J, Su X, Xiao Y, Lei S 2015 J. Mater. Chem. C 3 5207Google Scholar

    [36]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260Google Scholar

    [37]

    Yang S, Liu Y, Wu M, Zhao L D, Lin Z, Cheng H C, Wang Y, Jiang C, Wei S-H, Huang L, Huang Y, Duan X 2017 Nano Res. 11 554Google Scholar

    [38]

    Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E, Orenstein J 2016 Nat. Phys. 13 350Google Scholar

    [39]

    Zhang S, Dong N, McEvoy N, O’Brien M, Winters S, Berner N C, Yim C, Li Y, Zhang X, Chen Z, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [40]

    刘丰, 邢岐荣, 胡明列, 栗岩锋, 王昌雷, 柴路, 王清月 2011 物理学报 60 704Google Scholar

    Liu F, Xing Q R, Hu M L, Li Y F, Wang C L, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 704Google Scholar

    [41]

    Meng X, Zhou Y, Chen K, Roberts R H, Wu W, Lin J F, Chen R T, Xu X, Wang Y 2018 Adv. Opt. Mater. 6 1800137Google Scholar

    [42]

    Chen H, Wang C, Ouyang H, Song Y, Jiang T 2020 NanophotonicsGoogle Scholar

    [43]

    Wang K, Chen Y, Zheng J, Ge Y, Ji J, Song Y, Zhang H 2019 Nanotechnol. 30 415202Google Scholar

    [44]

    Song Y, Chen Y, Jiang X, Liang W, Wang K, Liang Z, Ge Y, Zhang F, Wu L, Zheng J, Ji J, Zhang H 2018 Adv. Opt. Mater. 6 1701287Google Scholar

  • 图 1  (a) GeSe2原子结构示意图; (b) 机械剥离GeSe2纳米片的AFM图, 样品的厚度为88 nm; (c) 偏振选择的拉曼光谱, 其中4个拉曼峰位置分别在118, 212, 251, 307 cm–1; (d)—(g) 4个拉曼峰强度分别对应的极坐标示意图

    Fig. 1.  (a) Schematic diagram of the atomic structure of GeSe2; (b) AFM image of GeSe2 flake by mechanical exfoliation. The thickness of the sample is 88 nm; (c) polarization-dependent Raman spectrum. Four Raman peak positions are at 118, 212, 251, 307 cm–1, respectively; (d)–(g) polar diagrams of the intensity of the four Raman peaks.

    图 2  线性吸收谱对层状GeSe2的各向异性能带表征 (a) 0°—180°偏振方向的线性吸收谱, 其中间隔15°; (b) 0°偏振方向的能带确定; 由陶克定理间接得到的能带位置, 其中切线与横坐标交点位置为2.717 eV; (c) 90°偏振方向的能带确定; 由陶克定理间接得到的能带位置, 其中切线与横坐标交点位置为2.7291 eV; (d) 层状GeSe2的各向异性能带; b轴方向上的带隙最大, 而a轴方向的带隙最小; (e) 层状GeSe2在400 nm处的各向异性线性吸收率极坐标图; (f) 层状GeSe2在450 nm处的各向异性线性吸收率极坐标图

    Fig. 2.  Characterization of anisotropic bands of layered GeSe2 by linear absorption spectrum: (a) Linear absorption spectrum with polarization directions from 0° to 180° with intervals of 15°; (b) the energy band of the 0° polarization direction is determined. The band position obtained indirectly from Tauc’s theorem, where the position of the intersection of the tangent and the abscissa is 2.717 eV; (c) determination of the energy band of the 90° polarization direction. The band position obtained indirectly from Tauc’s theorem, where the position of the intersection of the tangent and the abscissa is 2.7291 eV; (d) anisotropic energy bands of layered GeSe2. The band gap in the b-axis direction is the largest, and the band gap in the a-axis direction is the smallest; (e) polar graph of anisotropic linear absorptivity of layered GeSe2 at 400 nm; (f) polar graph of anisotropic linear absorption of layered GeSe2 at 450 nm.

    图 3  400 nm非共振激发下不同偏振方向的叠加态吸收实验结果 (a) I扫描实验结果, 圆圈表示实验数据, 实线表示激发态吸收拟合曲线; (b) 偏振相关的非线性调制深度极坐标图; (c) 偏振相关的线性吸收系数α0变化趋势极坐标图; (d) 偏振相关饱和吸收光强I1,s极坐标图; (e) 偏振相关的激发态吸收系数β0变化趋势极坐标图; (f) 激发态吸收的偏振相关饱和光强I2,s极坐标图

    Fig. 3.  Experimental results of superposition state absorption of different polarization directions under 400 nm non-resonant excitation: (a) Results of the I-scan experiment. The circles indicate the experimental data, and the solid lines indicate the excited state absorption curve; (b) polarization-dependent non-linear modulation depth polar plot; (c) polar plot of the change in polarization-dependent linear absorption coefficient α0; (d) polarization diagram of polarization-dependent saturated absorption intensity I1,s; (e) polarization diagram of the polarization-dependent excited state absorption coefficient β0; (f) polarized graph of polarization-dependent saturation light intensity I2,s absorbed by the excited state.

    图 4  450 nm近共振激发下不同偏振方向的叠加态吸收实验结果 (a) I扫描实验结果, 圆圈表示实验数据, 实线表示激发态吸收拟合曲线; (b) 偏振相关的非线性调制深度极坐标图; (c) 偏振相关的线性吸收系数α0变化趋势极坐标图; (d) 饱和吸收的偏振相关饱和光强I1,s极坐标图; (e) 偏振相关的激发态吸收系数β0变化趋势极坐标图; (f) 激发态吸收的偏振相关饱和光强I2,s极坐标图

    Fig. 4.  Experimental results of superposition state absorption of different polarization directions under 450 nm non-resonant excitation: (a) Results of the I-scan experiment. The circles indicate the experimental data, and the solid lines indicate the excited state absorption curve: (b) polarization-dependent non-linear modulation depth polar plot: (c) polar plot of the change in polarization-dependent linear absorption coefficient α0; (d) polarization diagram of polarization-dependent saturated absorption intensity I1,s; (e) polarization diagram of the polarization-dependent excited state absorption coefficient β0; (f) polarized graph of polarization-dependent saturation light intensity I2,s absorbed by the excited state.

    图 5  GeSe2偏振型全光开关的原理示意图

    Fig. 5.  Schematic diagram of GeSe2 based polarized-dependent all-optical switching

    表 1  400 nm非共振激发偏振相关的I扫描非线性叠加态吸收参数的拟合结果

    Table 1.  Fitting results of I-scan nonlinear superposition state absorption parameters related to 400 nm non-resonant excitation polarization

    Polarization/(°)α0/cm–1β0/cm·GW–1I1,s/GW·cm–2I2,s/GW·cm–2δT/%
    03155950815947417.0
    30335935597962387.5
    6036579606972358.2
    9038790663349349.7
    120369725991394368.1
    150340295436629397.3
    1803106249617082417.0
    下载: 导出CSV

    表 2  450 nm近共振激发偏振相关的I扫描非线性叠加态吸收参数的拟合结果

    Table 2.  Fitting results of I-scan nonlinear superposition state absorption parameters related to 450 nm non-resonant excitation polarization

    Polarization/(°)α0/cm–1β0/cm·GW–1I1,s/GW·cm–2I2,s/GW·cm–2δT/%
    0439091759390634.6
    30496311571258695.6
    606028965409757.1
    906750122188799.9
    1205726681469766.8
    150483451582333685.0
    1804317317610483624.6
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotechnol. 9 825Google Scholar

    [3]

    Zhang J, Ouyang H, Zheng X, You J, Chen R, Zhou T, Sui Y, Liu Y, Cheng X, Jiang T 2018 Opt. Lett. 43 243Google Scholar

    [4]

    Wang R, Ruzicka B A, Kumar N, Bellus M Z, Chiu H Y, Zhao H 2012 Phys. Rev. B 86 045406Google Scholar

    [5]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [6]

    Hu Y, Jiang T, Zhou J, Hao H, Sun H, Ouyang H, Tong M, Tang Y, Li H, You J, Zheng X, Xu Z, Cheng X 2019 Nano Energy 68 104280Google Scholar

    [7]

    Tang Y, Zhang Y, Ouyang H, Zhao M, Hao H, Wei K, Li H, Sui Y, You J, Zheng X, Xu Z, Cheng X, Shi L, Jiang T 2020 Laser Photonics Rev. 1900419Google Scholar

    [8]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [9]

    Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2013 Phys. Rev. Lett. 111 136802Google Scholar

    [10]

    Zhang J, Jiang T, Zhou T, Ouyang H, Zhang C X, Xin Z, Wang Z Y, Cheng X a 2018 Photonics Res. 6 14Google Scholar

    [11]

    Jiang T, Miao R, Zhao J, Xu Z, Zhou T, Wei K, You J, Zheng X, Wang Z, Cheng X A 2019 Chin. Opt. Lett. 17 020005Google Scholar

    [12]

    刘畅, 刘祥瑞 2019 物理学报 68 175Google Scholar

    Liu C, Liu X R 2019 Acta Phys. Sin. 68 175Google Scholar

    [13]

    Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572Google Scholar

    [14]

    Youngblood N, Peng R, Nemilentsau A, Low T, Li M 2016 ACS Photonics 4 8Google Scholar

    [15]

    Zhou Y, Zhang M, Guo Z, Miao L, Han S-T, Wang Z, Zhang X, Zhang H, Peng Z 2017 Mater. Horiz. 4 997Google Scholar

    [16]

    Bao Q, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327Google Scholar

    [19]

    Yang Y, Wang X, Liu S C, Li Z, Sun Z, Hu C, Xue D J, Zhang G, Hu J S 2019 Adv. Sci. 6 1801810Google Scholar

    [20]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [21]

    Zheng J, Yang Z, Si C, Liang Z, Chen X, Cao R, Guo Z, Wang K, Zhang Y, Ji J, Zhang M, Fan D, Zhang H 2017 ACS Photonics 4 1466Google Scholar

    [22]

    Tan D Z, Lim H E, Wang F, Mohamed N B, Mouri S, Zhang W J, Miyauchi Y H, Ohfuchi M, Matsuda K 2016 Nano Res. 10 546Google Scholar

    [23]

    黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花 2016 物理学报 65 063102Google Scholar

    Huang D H, Wan M J, Wang F H, Yang J S, Cao Q L, Wang J H 2016 Acta Phys. Sin. 65 063102Google Scholar

    [24]

    Zhang C X, Ouyang H, Miao R L, Sui Y Z, Hao H, Tang Y X, You J, Zheng X, Xu Z J, Cheng X A, Jiang T 2019 Adv. Opt. Mater. 7 1900631Google Scholar

    [25]

    Aslan O B, Chenet D A, van der Zande A M, Hone J C, Heinz T F 2015 ACS Photonics 3 96Google Scholar

    [26]

    Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P, Wang H 2015 Nano Res. 8 3651Google Scholar

    [27]

    Jang H, Ryder C R, Wood J D, Hersam M C, Cahill D G 2017 Adv. Mater. 29 1700650Google Scholar

    [28]

    Villegas C E P, Rocha A R, Marini A 2016 Phys. Rev. B 94 134306Google Scholar

    [29]

    Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [30]

    Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S, Castro Neto A H 2016 Phys. Rev. B 94 155428Google Scholar

    [31]

    魏钟鸣, 夏建白 2019 物理学报 68 48Google Scholar

    Wei Z M, Xia J B 2019 Acta Phys. Sin. 68 48Google Scholar

    [32]

    Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858Google Scholar

    [33]

    Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150Google Scholar

    [34]

    Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1900622Google Scholar

    [35]

    Cao M, Cheng B, Xiao L, Zhao J, Su X, Xiao Y, Lei S 2015 J. Mater. Chem. C 3 5207Google Scholar

    [36]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260Google Scholar

    [37]

    Yang S, Liu Y, Wu M, Zhao L D, Lin Z, Cheng H C, Wang Y, Jiang C, Wei S-H, Huang L, Huang Y, Duan X 2017 Nano Res. 11 554Google Scholar

    [38]

    Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E, Orenstein J 2016 Nat. Phys. 13 350Google Scholar

    [39]

    Zhang S, Dong N, McEvoy N, O’Brien M, Winters S, Berner N C, Yim C, Li Y, Zhang X, Chen Z, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [40]

    刘丰, 邢岐荣, 胡明列, 栗岩锋, 王昌雷, 柴路, 王清月 2011 物理学报 60 704Google Scholar

    Liu F, Xing Q R, Hu M L, Li Y F, Wang C L, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 704Google Scholar

    [41]

    Meng X, Zhou Y, Chen K, Roberts R H, Wu W, Lin J F, Chen R T, Xu X, Wang Y 2018 Adv. Opt. Mater. 6 1800137Google Scholar

    [42]

    Chen H, Wang C, Ouyang H, Song Y, Jiang T 2020 NanophotonicsGoogle Scholar

    [43]

    Wang K, Chen Y, Zheng J, Ge Y, Ji J, Song Y, Zhang H 2019 Nanotechnol. 30 415202Google Scholar

    [44]

    Song Y, Chen Y, Jiang X, Liang W, Wang K, Liang Z, Ge Y, Zhang F, Wu L, Zheng J, Ji J, Zhang H 2018 Adv. Opt. Mater. 6 1701287Google Scholar

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波功率沉积特性的影响. 物理学报, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [5] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [6] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [7] 王丁, 张美根. 各向异性渗流条件下弹性波的传播特征. 物理学报, 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [8] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [9] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [10] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究. 物理学报, 2012, 61(4): 048102. doi: 10.7498/aps.61.048102
    [11] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [12] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [13] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [14] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [15] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [16] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [17] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [18] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [19] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [20] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体. 物理学报, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
计量
  • 文章访问数:  6615
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 修回日期:  2020-04-11
  • 上网日期:  2020-09-16
  • 刊出日期:  2020-09-20

/

返回文章
返回