搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用光致发光研究不同通量辐照磷酸二氢钾晶体的缺陷

李香草 刘宝安 李猛 闫春燕 任杰 刘畅 巨新

引用本文:
Citation:

用光致发光研究不同通量辐照磷酸二氢钾晶体的缺陷

李香草, 刘宝安, 李猛, 闫春燕, 任杰, 刘畅, 巨新

Photoluminescence spectrum study of defects of potassium dihydrogen phosphate crystals irradiated by different laser fluences

Li Xiang-Cao, Liu Bao-An, Li Meng, Yan Chun-Yan, Ren Jie, Liu Chang, Ju Xin
PDF
HTML
导出引用
  • 磷酸二氢钾晶体中的缺陷对晶体的激光诱导损伤起着重要作用. 晶体的激光诱导损伤限制了大功率激光系统的发展. 本文用真空紫外光致发光发射谱研究了不同通量辐照下磷酸二氢钾晶体的缺陷. 与11.5 J/cm2辐照下的晶体及退役元件相比, 9 J/cm2辐照下晶体的荧光谱中在231.55 nm处出现了一个新峰. 它可能源于自捕获激子的辐照湮灭. 9.0 J/cm2辐照晶体中主要是短链结构, 而退役元件的损伤较复杂, 有短链、中链和长链结构. 短链中的P—O键比长链中的短, 磷的3s轨道与氧的2p轨道重叠增加, 则自捕获激子的辐照湮灭增强. 结果显示出退役元件与9 J/cm2辐照下晶体的结构不同. 对研究磷酸二氢钾晶体的激光诱导损伤机制有重要意义.
    The laser-induced damage to potassium dihydrogen phosphate (KDP) crystal restricts the development of high power laser systems and attract the attention of researchers. The defects are essential for the understanding of the laser-induced damage to KDP crystals. The defects in KDP crystals are commonly related to $ \rm H_2PO_4^{-} $ groups. The defects of KDP crystal have been studied extensively, however the changes of defects of KDP crystal with low fluence and high fluence have not been investigated sufficiently. The synchrotron radiation technology is a sensitive method of detecting the defects. The vacuum ultraviolet photoluminescence (PL) emission spectra can provide microscopic structural changes in KDP crystals. In this work, we investigate the defects of KDP crystals irradiated with different fluences by vacuum ultraviolet PL emission spectra. The vacuum ultraviolet spectra are obtained at the 4B8 beam line in Beijing synchrotron radiation facilities. Each KDP crystal spectrum is measured from 200 to 400 nm and 400 to 800 nm. The emission spectra of KDP crystal irradiated with different fluences are fitted for illustration. Each Gaussian curve represents a kind of defect. Comparing the retired components with KDP crystal irradiated by 11.5 J/cm2, the new band at 231.55 nm emerges in the spectra of KDP crystal irradiated by 9.0 J/cm2. The intrinsic luminescence band is assigned to the radiative annihilation of self-trapped excitons. According to our previous work, the short chain structures mainly exist in the crystal irradiated by 9.0 J/cm2, and the long chain structure is mainly in the crystal irradiated by 11.5 J/cm2. The retired components have the short, medium and long chain. The length of P—O bond in the short chain is shorter than that in the long chain structure. The overlap between phosphorus 3s orbitals and oxygen 2p increases, and the radiative annihilation of STEs becomes stronger. So the band at 231.55 nm emerges in the spectrum of KDP crystal irradiated by 9.0 J/cm2. It suggests that the structure of the retired component and the structure of KDP crystal irradiated by 9.0 J/cm2 are different. The results provide an insight into the defects in KDP crystals. It is meaningful to study the mechanism of laser-induced damage to KDP crystal.
      通信作者: 巨新, jux@ustb.edu.cn
      Corresponding author: Ju Xin, jux@ustb.edu.cn
    [1]

    Carr C W, Radousky H B, Demos S G 2003 Phys. Rev. Lett. 91 127402Google Scholar

    [2]

    Boopathi K, Rajesh P, Ramasamy P, Manyum P 2013 Opt. Mater. 35 954Google Scholar

    [3]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar

    [4]

    Schmid A, Kelly P, Bräunlich P 1977 Phys. Rev. B 16 4569Google Scholar

    [5]

    Tien A C, Backus S, Kapteyn H, Murnane M, Mourou G 1999 Phys. Rev. Lett. 82 3883Google Scholar

    [6]

    Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 40 350Google Scholar

    [7]

    Yokotani A, Sasaki T, Yoshida K, Yamanaka T, Yamanaka C 1986 Appl. Phys. Lett. 48 1030Google Scholar

    [8]

    Singleton M F, Cooper J F, Andresen B D, Milanovich F P 1988 Appl. Phys. Lett. 52 857Google Scholar

    [9]

    Demos S G, Yan M, Staggs M, De Yoreo J J, Radousky H B 1998 Appl. Phys. Lett. 72 2367Google Scholar

    [10]

    Jiang H, McNary J, Tom H W K, Yan M, Radousky H B, Demos S G 2002 Appl. Phys. Lett. 81 3149Google Scholar

    [11]

    Demos S G, Staggs M, Radousky H B 2003 Phys. Rev. B 67 224102Google Scholar

    [12]

    Davis J E, Hughes R S, Lee H W H 1993 Chem. Phys. Lett. 207 540Google Scholar

    [13]

    Marshall C D 1994 J. Opt. Soc. Am. B: Opt. Phys. 11 774Google Scholar

    [14]

    Chirila M M, Garces N Y, Halliburton L E, Demos S G, Land T A, Radousky H B 2003 J. Appl. Phys. 94 6456Google Scholar

    [15]

    Pommiès M, Damiani D, Le Borgne X, Dujardin C, Surmin A, Birolleau J C, Pilon F, Bertussi B, Piombini H 2007 Opt. Commun. 275 372Google Scholar

    [16]

    Paul De Mange, Christopher W. Carr, Raluca A. Negres, 2008 J. Appl. Phys. 104 103103Google Scholar

    [17]

    Wang K, Fang C, Zhang J, Sun X, Wang S, Gu Q, Zhao X, Wang B 2006 J. Cryst. Growth 287 478Google Scholar

    [18]

    Paul De Mange R A N, Christopher W C 2006 Opt. Express 14 5313Google Scholar

    [19]

    Duchateau G, Geoffroy G, Dyan A, Piombini H, Guizard S 2011 Phys. Rev. B 83 075114Google Scholar

    [20]

    Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys Condens Matter 25 435501Google Scholar

    [21]

    Li X, Liu B A, Yan C, Liu C, Ju X 2018 Opt. Mater. Express 8 816Google Scholar

    [22]

    Müller K A 1987 Ferroelectrics 72 273Google Scholar

    [23]

    Setzler S D, Stevens K T, Halliburton L E 1998 Phys. Rev. B 57 2643Google Scholar

    [24]

    Harris L B, Vella G J 1973 J. Chem. Phys. 58 4550Google Scholar

    [25]

    Griscom D L, Friebele E J, Long K J, Fleming J W 1983 J. Appl. Phys. 54 3743Google Scholar

    [26]

    Archidi M E, Haddad M, Nadiri A 1996 Nucl. Instrum. Methods Phys. Res. B 116 145Google Scholar

    [27]

    Ehrt D, Ebeling P, Natura U 2000 J. Non-Cryst. Solids 263 240Google Scholar

    [28]

    Chiodini N, Meinardi F, Morazzoni F, Paleari A, Scotti R, Di Martino D 2000 Appl. Phys. Lett. 76 3209Google Scholar

    [29]

    Ogorodnikov I N, Pustovarov V A, Cheremnykh V S 2003 Opt. Spectrosc. 95 385Google Scholar

    [30]

    Ogorodnikov I N, Shul’gin B V 2001 Opt. Spectrosc. 91 224Google Scholar

  • 图 1  不同通量辐照下KDP晶体的PL发射谱, 测量能量范围为 (a) 200—400 nm; (b) 400—800 nm

    Fig. 1.  PL emission spectra of KDP crystal with different flux irradiations measured from (a) 200 to 400 nm and (b) 400 to 800 nm.

    图 2  400—800 nm范围内不同通量辐照下KDP晶体的PL发射谱 (a) 退役元件; (b) 9.0 J/cm2; (c) 11.5 J/cm2. 黑色线是实验光谱, 红线是拟合叠加谱, 蓝线为高斯拟合曲线

    Fig. 2.  PL emission spectra of KDP crystals with different flux irradiations measured from 400 to 800 nm: (a) Retired; (b) 9.0 J/cm2; (c) 11.5 J/cm2. The black solid lines represent the experiment spectra, the red dotted lines represent the simulated spectra, and the blue lines represent the Gaussian fitting curve.

    图 3  200—400 nm范围内不同通量辐照下KDP晶体的PL发射谱 (a) 退役原件; (b) 9.0 J/m2; (c) 11.5 J/m2. 图中黑色线是实验光谱, 红线是拟合叠加谱, 蓝线为高斯拟合曲线

    Fig. 3.  PL emission spectra of KDP crystals with different flux irradiations were measured from 200 to 400 nm: (a) Retired; (b) 9.0 J/m2; (c) 11.5 J/m2. The black solid lines represent the experiment spectra, the red dotted lines represent the simulated spectra and blue lines represent the Gaussian fitting curve.

    表 1  400—800 nm范围内不同通量辐照下KDP晶体PL发射谱的高斯拟合参数

    Table 1.  Parameters of peaks with Gaussian fitting for samples irradiated by different flux irradiations measured from 400 to 800 nm.

    PeakPosition/nmArea/arb. units.FWHM/nm
    Retired9.0 J/cm211.5 J/cm2Retired9.0 J/cm211.5 J/cm2Retired9.0 J/cm211.5 J/cm2
    A420.27430.52423.870.120.350.1315.3845.1419.41
    B479.19480.94480.542.231.501.1288.9591.5380.68
    C587.24578.64593.582.401.682.51116.60140.89122.17
    下载: 导出CSV

    表 2  200—400 nm范围内不同通量辐照下KDP晶体PL发射谱的高斯拟合参数

    Table 2.  Parameters of peaks with Gaussian fitting for samples irradiated by different flux irradiations measured from 200 to 400 nm.

    PeakPosition/nmArea/arb. unitsFWHM/nm
    Retired9.0 J/cm211.5 J/cm2Retired9.0 J/cm211.5 J/cm2Retired9.0 J/cm211.5 J/cm2
    A231.552.0032.89
    B268.01269.61269.043.332.262.2971.6662.6167.12
    C324.02326.95326.822.671.941.3591.9083.3079.92
    下载: 导出CSV
  • [1]

    Carr C W, Radousky H B, Demos S G 2003 Phys. Rev. Lett. 91 127402Google Scholar

    [2]

    Boopathi K, Rajesh P, Ramasamy P, Manyum P 2013 Opt. Mater. 35 954Google Scholar

    [3]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar

    [4]

    Schmid A, Kelly P, Bräunlich P 1977 Phys. Rev. B 16 4569Google Scholar

    [5]

    Tien A C, Backus S, Kapteyn H, Murnane M, Mourou G 1999 Phys. Rev. Lett. 82 3883Google Scholar

    [6]

    Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 40 350Google Scholar

    [7]

    Yokotani A, Sasaki T, Yoshida K, Yamanaka T, Yamanaka C 1986 Appl. Phys. Lett. 48 1030Google Scholar

    [8]

    Singleton M F, Cooper J F, Andresen B D, Milanovich F P 1988 Appl. Phys. Lett. 52 857Google Scholar

    [9]

    Demos S G, Yan M, Staggs M, De Yoreo J J, Radousky H B 1998 Appl. Phys. Lett. 72 2367Google Scholar

    [10]

    Jiang H, McNary J, Tom H W K, Yan M, Radousky H B, Demos S G 2002 Appl. Phys. Lett. 81 3149Google Scholar

    [11]

    Demos S G, Staggs M, Radousky H B 2003 Phys. Rev. B 67 224102Google Scholar

    [12]

    Davis J E, Hughes R S, Lee H W H 1993 Chem. Phys. Lett. 207 540Google Scholar

    [13]

    Marshall C D 1994 J. Opt. Soc. Am. B: Opt. Phys. 11 774Google Scholar

    [14]

    Chirila M M, Garces N Y, Halliburton L E, Demos S G, Land T A, Radousky H B 2003 J. Appl. Phys. 94 6456Google Scholar

    [15]

    Pommiès M, Damiani D, Le Borgne X, Dujardin C, Surmin A, Birolleau J C, Pilon F, Bertussi B, Piombini H 2007 Opt. Commun. 275 372Google Scholar

    [16]

    Paul De Mange, Christopher W. Carr, Raluca A. Negres, 2008 J. Appl. Phys. 104 103103Google Scholar

    [17]

    Wang K, Fang C, Zhang J, Sun X, Wang S, Gu Q, Zhao X, Wang B 2006 J. Cryst. Growth 287 478Google Scholar

    [18]

    Paul De Mange R A N, Christopher W C 2006 Opt. Express 14 5313Google Scholar

    [19]

    Duchateau G, Geoffroy G, Dyan A, Piombini H, Guizard S 2011 Phys. Rev. B 83 075114Google Scholar

    [20]

    Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys Condens Matter 25 435501Google Scholar

    [21]

    Li X, Liu B A, Yan C, Liu C, Ju X 2018 Opt. Mater. Express 8 816Google Scholar

    [22]

    Müller K A 1987 Ferroelectrics 72 273Google Scholar

    [23]

    Setzler S D, Stevens K T, Halliburton L E 1998 Phys. Rev. B 57 2643Google Scholar

    [24]

    Harris L B, Vella G J 1973 J. Chem. Phys. 58 4550Google Scholar

    [25]

    Griscom D L, Friebele E J, Long K J, Fleming J W 1983 J. Appl. Phys. 54 3743Google Scholar

    [26]

    Archidi M E, Haddad M, Nadiri A 1996 Nucl. Instrum. Methods Phys. Res. B 116 145Google Scholar

    [27]

    Ehrt D, Ebeling P, Natura U 2000 J. Non-Cryst. Solids 263 240Google Scholar

    [28]

    Chiodini N, Meinardi F, Morazzoni F, Paleari A, Scotti R, Di Martino D 2000 Appl. Phys. Lett. 76 3209Google Scholar

    [29]

    Ogorodnikov I N, Pustovarov V A, Cheremnykh V S 2003 Opt. Spectrosc. 95 385Google Scholar

    [30]

    Ogorodnikov I N, Shul’gin B V 2001 Opt. Spectrosc. 91 224Google Scholar

计量
  • 文章访问数:  4840
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-05-19
  • 上网日期:  2020-05-29
  • 刊出日期:  2020-09-05

/

返回文章
返回