搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜掺杂Cu2SnSe4的热电输运性能

郑丽仙 胡剑峰 骆军

引用本文:
Citation:

铜掺杂Cu2SnSe4的热电输运性能

郑丽仙, 胡剑峰, 骆军

Thermoelectric properties of Cu-doped Cu2SnSe4 compounds

Zheng Li-Xian, Hu Jian-Feng, Luo Jun
PDF
HTML
导出引用
  • Cu2SnSe4化合物具有本征的低热导率和可调控的电导率, 同时不含稀贵元素、无毒和价格低廉, 具有作为中温区热电材料的潜力. 本文通过高能球磨结合放电等离子烧结制备了Cu2SnSe4以及Cu掺杂的Cu2+xSnSe4块体材料($ 0.2\leqslant x \leqslant 1 $). 研究了Cu掺杂填充Cu/Sn位置上1/4本征空位对Cu2+xSnSe4热电性能的影响, 发现Cu/Sn中1/4空位能够被Cu完全填满(x = 1), 且Cu掺杂能够大幅度地提升(可达两个数量级)样品的电导率, 从而显著提高了功率因子. 同时, 发现在大Cu掺杂量范围($ 0.1 \leqslant x \leqslant 0.8 $)内, Cu2+xSnSe4电导率增长与掺杂量增加呈线性关系, 且载流子迁移率随Cu掺杂量的增加而增加. 进一步的研究发现, 载流子在Cu2+xSnSe4中的电输运行为遵循电子-声子耦合的小极化子模型.
    Cu2SnSe4 compound, as a non-toxic inexpensive thermoelectric material, has low thermal conductivity and adjustable conductivity, which promises to have a high-efficiency thermoelectric application in a medium-temperature range. The Cu-doped bulk samples of Cu2+xSnSe4 (0 ≤ x ≤ 1) compounds are synthesized by a fast method, i.e. by combining high energy ball milling with spark plasma sintering. In this work, the thermoelectric properties of Cu-doped Cu2SnSe4 compound are investigated. The experimental results reveal that the intrinsic vacancy at Cu/Sn site of Cu2SnSe4 can be completely filled by Cu (i.e. x = 1 in Cu2+xSnSe4). The crystal structures of all Cu2+xSnSe4 samples have the same space group F3m as that of the undoped Cu2SnSe4. The electrical conductivity of Cu2+xSnSe4 increases rapidly with the content of Cu doped at intrinsic vacancy increasing, concretely, it increases by two orders of magnitude and reaches a maximum value at x = 0.8. The increase in electrical conductivity results in the significant improvement in power factor. The observed results display that the increase in electrical conductivity is a nonlinear relationship with Cu-doping content in a range of 0 < x < 0.1, but is linearly related to the Cu-doping content in a range of 0.1 ≤ x ≤ 0.8. Meanwhile, the carrier (hole) concentration is observed to reach a maximum value at x = 0.2 and then slightly decreases at x = 0.8. The rapid increase in electrical conductivity with Cu-doping content increasing may be attributed to the intensifying of Cu-Se bond network that plays a dominant role in controlling hole transport in Cu2SnSe4. The carrier mobility also increases with the Cu-doping content increasing in the range of 0 ≤ x ≤ 0.8, which is in contrast to the common scenarios in thermoelectric materials that the carrier mobility decreases with the increase in the carrier concentration. Furthermore, the carrier transport mechanism of Cu2+xSnSe4 sample is revealed to be able to be described by the small polaron hopping model, which means the strong coupling between electron and phonon. The analysis of thermal conductivities of the Cu2+xSnSe4 samples reveals that the relationship between the electronic thermal conductivity and the electrical conductivity cannot be described by the classical Wiedemanmn-Franz law, which may be attributed to the formation of electron-phonon coupled small polaron. Therefore, the coupling between electron and phonon inside the Cu2+xSnSe4 structure strongly influences the behaviors of carrier transmission and thermal conductivity.
      通信作者: 胡剑峰, jianfenghu@shu.edu.cn
      Corresponding author: Hu Jian-Feng, jianfenghu@shu.edu.cn
    [1]

    DiSalvo F J 1999 Science 285 703Google Scholar

    [2]

    Dehkordi A M, Zebarjadi M, He J, Tritt T M 2015 Mater. Sci. Eng., R 97 1Google Scholar

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [4]

    Sussardi A, Tanaka T, Khan A U 2015 J. Materiomics 1 196Google Scholar

    [5]

    Gayner C, Kar K K 2016 Prog. Mater. Sci. 83 330Google Scholar

    [6]

    Rowe D M 2005 Thermoelectrics Handbook: Macro to Nano (1st Ed.) (Boca Raton: CRC press) Chaper 1 pp3−6

    [7]

    Chasmar R P, Stratton R 1959 Int. J. Electron. 7 52Google Scholar

    [8]

    Rowe D M, Min G E 1998 J. Power Sources 73 193Google Scholar

    [9]

    Pan R, Yamei L, Jian H, et al. 2018 Inorg. Chem. Front. 5 2380Google Scholar

    [10]

    Hebert S, Berthebaud D, Daou R, et al. 2016 J. Phys. Condens. Matter 28 013001Google Scholar

    [11]

    Qiu P, Shi X, Chen L 2016 Energy Storage Mater. 3 85Google Scholar

    [12]

    Ma R, Liu G, Li Y, et al. 2018 J. Asian Ceram. Soc. 6 13Google Scholar

    [13]

    Ibanez M, Cadavid D, Anselmi-Tamburini U, et al. 2013 J. Mater. Chem. A 1 1421Google Scholar

    [14]

    Song J M, Liu Y, Niu H L, et al. 2013 J. Alloys Compd. 581 646Google Scholar

    [15]

    Fan J, Carrillo-Cabrera W, Akselrud L, et al. 2013 Inorg. Chem. 52 11067Google Scholar

    [16]

    Janicek P, Kucek V, Kasparova J, et al. 2019 J. Electron. Mater. 48 2112Google Scholar

    [17]

    Plirdpring T, Kurosaki K, Kosuga A, et al. 2012 Adv. Mater. 24 3622Google Scholar

    [18]

    Zhu Y C, Liu Y, Ren G K, et al. 2018 Inorg. Chem. 57 6051Google Scholar

    [19]

    Liu F S, Zheng J X, Huang M J, et al. 2014 Sci. Rep. 4 5774Google Scholar

    [20]

    Shi X Y, Xi L L, Fan J, et al. 2010 Chem. Mater. 22 6029Google Scholar

    [21]

    Li Y Y, Liu G H, Li J T, et al. 2016 New J. Chem. 40 5394Google Scholar

    [22]

    Fan J, Liu HL, Shi X Y, et al. 2013 Acta Mater. 61 4297Google Scholar

    [23]

    Lu X, Morelli D T, 2012 J. Electron. Mater. 41 1554Google Scholar

    [24]

    Raju C, Falmbigl M, Rogl P, et al. 2014 Mater. Chem. Phys. 147 1022Google Scholar

    [25]

    Prasad S K, Rao A, Gahtori B, et al. 2016 Mater. Res. Bull. 83 160Google Scholar

    [26]

    Li Y Y, Liu G H, Cao T F, et al. 2016 Adv. Funct. Mater. 26 6025Google Scholar

    [27]

    Marcano G, Rincón C, Marın G, et al. 2002 J. Appl. Phys. 92 1811Google Scholar

    [28]

    Wahab L A, El-Den M B, Farrag A A, et al. 2008 J. Phys. Chem. Solids 70 604Google Scholar

    [29]

    Baiyin M, Naren J, Gang G, et al. 2013 Inorg. Chem. Commun. 35 135Google Scholar

    [30]

    Li W, Lin S, Zhang X, et al. 2016 Chem. Mater. 28 6227Google Scholar

    [31]

    范宝新, 聂玉昕, 杨国桢 2009 中国大百科全书·物理学 (第二版) (北京: 中国大百科全书出版社) 第759页

    Fan B X, Nie Y X, Yang G Z 2009 Chinese Encyclopedia: Physics (2nd Ed.) (Beijing: Encyclopedia of China Publishing House) p759 (in Chinese)

    [32]

    Lee S K, Yang H F, Hong J, et al. 2017 Science 355 371Google Scholar

  • 图 1  Cu2SnSe4的晶体结构

    Fig. 1.  Crystal structure of Cu2SnSe4.

    图 2  Cu2+xSnSe4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1)的(a) 室温XRD图谱、(b) 晶胞参数、(c) SEM和EDS元素分布图

    Fig. 2.  (a) XRD patterns, (b) cell parameter and (c) SEM images and EDS mappings of the Cu2+xSnSe4 samples (x = 0, 0.2, 0.4, 0.6, 0.8, 1) at room temperature.

    图 3  样品Cu2+xSnSe4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1)的(a) 电导率、(b) 小极化子模型拟合、(c) Seebeck系数和(d) 功率因子, 其中Re.代表文献[30]结果

    Fig. 3.  Temperature dependence of (a) electrical conductivity, (b) the small polaron hopping model fitting, (c) Seebeck coefficient and (d) power factor (PF) for the samples of Cu2+xSnSe4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1). Re. represents the results of Ref [30]

    图 4  (a) Cu2+xSnSe4 (x = 0, 0.03[30], 0.06[30], 0.1[30], 0.2, 0.4, 0.6, 0.8, 1)在323 K的电导率和极化子激活能 (插图为标记处放大图); (b) Cu2+xSnSe4部分样品的室温载流子浓度和迁移率

    Fig. 4.  (a) Electrical conductivity and activation energy for the sample of Cu2+xSnSe4 (x = 0, 0.03[30], 0.06[30], 0.1[30], 0.2, 0.4, 0.6, 0.8, 1) at 323 K; (b) carrier concentration and carrier mobility of Cu2+xSnSe4 at room temperature.

    图 5  样品Cu2+xSnSe4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1)的热导率随温度的变化

    Fig. 5.  Temperature dependence of total thermal conductivity for the sample of Cu2+xSnSe4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1)

    图 6  样品Cu2+xSnSe4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1)的ZT随温度的变化

    Fig. 6.  Temperature dependence of the figure of merit for the sample of Cu2+xSnSe4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1).

  • [1]

    DiSalvo F J 1999 Science 285 703Google Scholar

    [2]

    Dehkordi A M, Zebarjadi M, He J, Tritt T M 2015 Mater. Sci. Eng., R 97 1Google Scholar

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [4]

    Sussardi A, Tanaka T, Khan A U 2015 J. Materiomics 1 196Google Scholar

    [5]

    Gayner C, Kar K K 2016 Prog. Mater. Sci. 83 330Google Scholar

    [6]

    Rowe D M 2005 Thermoelectrics Handbook: Macro to Nano (1st Ed.) (Boca Raton: CRC press) Chaper 1 pp3−6

    [7]

    Chasmar R P, Stratton R 1959 Int. J. Electron. 7 52Google Scholar

    [8]

    Rowe D M, Min G E 1998 J. Power Sources 73 193Google Scholar

    [9]

    Pan R, Yamei L, Jian H, et al. 2018 Inorg. Chem. Front. 5 2380Google Scholar

    [10]

    Hebert S, Berthebaud D, Daou R, et al. 2016 J. Phys. Condens. Matter 28 013001Google Scholar

    [11]

    Qiu P, Shi X, Chen L 2016 Energy Storage Mater. 3 85Google Scholar

    [12]

    Ma R, Liu G, Li Y, et al. 2018 J. Asian Ceram. Soc. 6 13Google Scholar

    [13]

    Ibanez M, Cadavid D, Anselmi-Tamburini U, et al. 2013 J. Mater. Chem. A 1 1421Google Scholar

    [14]

    Song J M, Liu Y, Niu H L, et al. 2013 J. Alloys Compd. 581 646Google Scholar

    [15]

    Fan J, Carrillo-Cabrera W, Akselrud L, et al. 2013 Inorg. Chem. 52 11067Google Scholar

    [16]

    Janicek P, Kucek V, Kasparova J, et al. 2019 J. Electron. Mater. 48 2112Google Scholar

    [17]

    Plirdpring T, Kurosaki K, Kosuga A, et al. 2012 Adv. Mater. 24 3622Google Scholar

    [18]

    Zhu Y C, Liu Y, Ren G K, et al. 2018 Inorg. Chem. 57 6051Google Scholar

    [19]

    Liu F S, Zheng J X, Huang M J, et al. 2014 Sci. Rep. 4 5774Google Scholar

    [20]

    Shi X Y, Xi L L, Fan J, et al. 2010 Chem. Mater. 22 6029Google Scholar

    [21]

    Li Y Y, Liu G H, Li J T, et al. 2016 New J. Chem. 40 5394Google Scholar

    [22]

    Fan J, Liu HL, Shi X Y, et al. 2013 Acta Mater. 61 4297Google Scholar

    [23]

    Lu X, Morelli D T, 2012 J. Electron. Mater. 41 1554Google Scholar

    [24]

    Raju C, Falmbigl M, Rogl P, et al. 2014 Mater. Chem. Phys. 147 1022Google Scholar

    [25]

    Prasad S K, Rao A, Gahtori B, et al. 2016 Mater. Res. Bull. 83 160Google Scholar

    [26]

    Li Y Y, Liu G H, Cao T F, et al. 2016 Adv. Funct. Mater. 26 6025Google Scholar

    [27]

    Marcano G, Rincón C, Marın G, et al. 2002 J. Appl. Phys. 92 1811Google Scholar

    [28]

    Wahab L A, El-Den M B, Farrag A A, et al. 2008 J. Phys. Chem. Solids 70 604Google Scholar

    [29]

    Baiyin M, Naren J, Gang G, et al. 2013 Inorg. Chem. Commun. 35 135Google Scholar

    [30]

    Li W, Lin S, Zhang X, et al. 2016 Chem. Mater. 28 6227Google Scholar

    [31]

    范宝新, 聂玉昕, 杨国桢 2009 中国大百科全书·物理学 (第二版) (北京: 中国大百科全书出版社) 第759页

    Fan B X, Nie Y X, Yang G Z 2009 Chinese Encyclopedia: Physics (2nd Ed.) (Beijing: Encyclopedia of China Publishing House) p759 (in Chinese)

    [32]

    Lee S K, Yang H F, Hong J, et al. 2017 Science 355 371Google Scholar

  • [1] 余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋. 第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能. 物理学报, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [2] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [5] 李彩云, 何文科, 王东洋, 张潇, 赵立东. 通过插层Cu实现SnSe2的高效热电性能. 物理学报, 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [6] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能. 物理学报, 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [8] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清. Ga掺杂对Cu3SbSe4热电性能的影响. 物理学报, 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [10] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [11] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [12] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [13] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [14] 王作成, 李涵, 苏贤礼, 唐新峰. In0.3Co4Sb12-xSex 方钴矿热电材料的制备和热电性能. 物理学报, 2011, 60(2): 027202. doi: 10.7498/aps.60.027202
    [15] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [16] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [17] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究. 物理学报, 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [18] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [19] 李 涵, 唐新峰, 刘桃香, 宋 晨, 张清杰. Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能. 物理学报, 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [20] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能. 物理学报, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
计量
  • 文章访问数:  4774
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-06
  • 修回日期:  2020-08-09
  • 上网日期:  2020-12-04
  • 刊出日期:  2020-12-20

/

返回文章
返回