搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧气分子吸附对单蒽分子器件自旋输运性质调控

崔兴倩 刘乾 范志强 张振华

引用本文:
Citation:

氧气分子吸附对单蒽分子器件自旋输运性质调控

崔兴倩, 刘乾, 范志强, 张振华

Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices

Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua
PDF
HTML
导出引用
  • 利用基于密度泛函理论结合非平衡格林函数的第一性原理计算方法, 开展了氧气分子吸附对以石墨烯纳米带为电极的单蒽分子器件自旋极化输运性质的调控物理机理探索研究. 计算结果显示, 在未吸附氧气分子时, 单蒽分子以横向方式连接石墨烯纳米带要比单蒽分子以纵向方式连接石墨烯纳米带具有更优异的自旋过滤效应. 当氧气吸附单蒽分子后, 两种构型器件的自旋电流都会大幅度降低, 但是自旋过滤效应会有所增强. 尤其是单蒽分子以横向方式连接石墨烯纳米带的器件在± 0.5 V区间始终保持了近100%的自旋过滤效率. 通过分析器件的自旋极化输运谱、输运本征态和自旋过滤效率等, 详细地解释了氧气分子吸附调控器件的自旋输运性质以及改善器件的自旋过滤行为的物理机理.
    With the miniaturization of molecular devices, high-performance nano devices can be fabricated by controlling the spin states of electrons. Because of their advantages such as low energy consumption, easy integration and long decoherence time, more and more attention has been paid to them. So far, the spin filtration efficiency of molecular device with graphene electrode is not very stable, which will decrease with the increase of voltage, and thus affecting its applications. Therefore, how to enhance the spin filtration efficiency of molecular device with graphene electrode becomes a scientific research problem. Using the first principle calculations based on density functional theory combined with non-equilibrium Green’s function, the physical mechanism of regulating the spin polarization transport properties of single anthracene molecule device with graphene nanoribon as electrode is investigated by molecular oxygen adsorption. In order to explore the effect of the change of the connection mode between single anthracene molecule and zigzag graphene nanoribbon electrode on the spin transport properties of the device, we establish two models. The first model is the model M1, which is the single anthracene molecule longitudinal connection, and the second model is the model M2, which is the single anthracene molecule lateral connection. The adsorption model of single oxygen molecule is denoted by M1O and M2O respectively. The results show that when none of oxygen molecules is adsorbed, the spin filtering effect of single anthracene molecule connecting graphene nanoribbons laterally (M2) is better than that of single anthracene molecule connecting graphene nanoribbons longitudinally (M1). After oxygen molecules are adsorbed on single anthracene molecule, the enhanced localized degree of transport eigenstate will make the spin current of the two kinds of devices decrease by nearly two orders of magnitude. However, molecular oxygen adsorption significantly improves the spin filtering efficiency of the device and enhances the application performance of the device. The maximal spin filtering efficiency of single anthracene molecule connecting graphene nanoribbons longitudinal (M1O) can be increased from 72% to 80%. More importantly, the device with single anthracene molecule connecting graphene nanoribbons laterally (M2) maintains nearly 100% spin filtering efficiency in a bias range from –0.5 V to +0.5 V. These results provide more theoretical guidance for practically fabricating spin molecular devices and regulating their spin transport properties.
      通信作者: 范志强, zqfan@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674039, 61701431)、湖南省自然科学基金(批准号: 2020JJ4597, 2020JJ4625)、湖南省教育厅科学基金(批准号: 18B157)和湖南省研究生科研创新项目(批准号: CX2019703)资助的课题
      Corresponding author: Fan Zhi-Qiang, zqfan@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674039, 61701431), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2020JJ4597, 2020JJ4625), the Science Foundationcd of Education Bureau of Hunan Province, China (Grant No. 18B157), and the Postgraduate Scientific Research Innovation Program of Hunan Province, China (Grant No. CX2019703)
    [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J 1997 Science 278 252Google Scholar

    [3]

    Fan Z Q, Chen K Q 2010 Physica E 42 1492Google Scholar

    [4]

    范志强, 谢芳 2012 物理学报 61 077303Google Scholar

    Fan Z Q, Xie F 2012 Acta Phys. Sin. 61 077303Google Scholar

    [5]

    Fan Z Q, Chen K Q, Wan Q, Zhang Y 2010 J. Appl. Phys. 107 113713Google Scholar

    [6]

    Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704Google Scholar

    [7]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [8]

    Fan Z Q, Sun W Y, Jiang X W, Luo J W, Li S S 2017 Org. Electron. 44 20Google Scholar

    [9]

    Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303Google Scholar

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar

    [13]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2012 Org. Electron. 13 2954Google Scholar

    [14]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [15]

    Zhu C, Wei D H, Wu Y L, Zhang Z, Zhang G H, Duan J F, Li L J, Zhu H L, Zhu Z Y, Chen Z Y 2019 J. Alloys Compd. 778 731Google Scholar

    [16]

    Yankowitz M, Chen S W, Polshyn H, Zhang Y X, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [17]

    Wu N N, Xu D M, Wang Z, Wang F L, Liu J R, Liu W, Shao Q, Liu H, Gao Q, Guo Z H 2019 Carbon 145 433Google Scholar

    [18]

    Cao Y, Dong S H, Liu S, He L, Gan L, Yu X M, Steigerwald M L, Wu X S, Liu Z F, Guo X F 2012 Angew. Chem. Int. Ed. 51 12228Google Scholar

    [19]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 物理学报 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [20]

    Xie F, Fan Z Q, Liu K, Wang H Y, Yu J H, Chen K Q 2015 Org. Electron. 27 41Google Scholar

    [21]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [22]

    Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar

    [23]

    Wan H, Zhou B H, Chen X, Sun C Q, Zhou G H 2012 J. Phys. Chem. C 116 2570Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [26]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [27]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [28]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [29]

    Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar

    [30]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [31]

    胡锐, 范志强, 张振华 2017 物理学报 66 138501Google Scholar

    Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 138501Google Scholar

    [32]

    Sun W Y, Cui X Q, Fan Z Q, Nie L Y, Zhang Z H 2019 J. Phys. D: Appl. Phys. 52 155102Google Scholar

    [33]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [34]

    Zhang D, Long M Q, Zhang X J, Ouyang F P, Li M J, Xu H 2015 J. Appl. Phys. 117 014311Google Scholar

    [35]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [36]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [37]

    Yan S L, Long M Q, Zhang X J, Xu H 2014 Phys. Lett. A 378 960Google Scholar

    [38]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [39]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstiche B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanper A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [40]

    Quantum ATK, version P-2013.08 https://www.synopsys.com [2013-8-1]

  • 图 1  以锯齿型石墨烯纳米带为电极的单蒽分子器件模型 (a) 模型M1; (b) 模型M2

    Fig. 1.  Schematic views of the single anthracene molecular device based on nanoribbon electrode: (a) Model M1; (b) model M2.

    图 2  (a)和(c)分别表示M1和M1O的零偏压自旋输运谱; (b)和(d)分别表示M1和M1O费米能级处的自旋输运本征态

    Fig. 2.  (a), (c) The zero-bias spin-resolved transmission spectra of M1 and M1O; (b), (d) the transmission eigenstate of M1 and M1O on Fermi energy.

    图 3  (a)和(c)分别表示M2和M2O的零偏压自旋输运谱; (b)和(d)分别表示M2和M2O费米能级处的自旋输运本征态

    Fig. 3.  (a), (c) The zero-bias spin-resolved transmission spectra of M2 and M2O; (b), (d) the transmission eigenstate of M2 and M2O on Fermi energy.

    图 4  (a)−(d)分别表示M1, M1O, M2和M2O的自旋极化电流-电压特性

    Fig. 4.  (a)−(d) The spin-resolved I-V characteristics of M1, M1O, M2 and M2O, respectively.

    图 5  (a) 器件M1和M1O的自旋过滤效率; (b)器件M2和M2O的自旋过滤效率

    Fig. 5.  (a) SFE of M1 and M1O device; (b) SFE of M2 and M2O device.

  • [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J 1997 Science 278 252Google Scholar

    [3]

    Fan Z Q, Chen K Q 2010 Physica E 42 1492Google Scholar

    [4]

    范志强, 谢芳 2012 物理学报 61 077303Google Scholar

    Fan Z Q, Xie F 2012 Acta Phys. Sin. 61 077303Google Scholar

    [5]

    Fan Z Q, Chen K Q, Wan Q, Zhang Y 2010 J. Appl. Phys. 107 113713Google Scholar

    [6]

    Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704Google Scholar

    [7]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [8]

    Fan Z Q, Sun W Y, Jiang X W, Luo J W, Li S S 2017 Org. Electron. 44 20Google Scholar

    [9]

    Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303Google Scholar

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar

    [13]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2012 Org. Electron. 13 2954Google Scholar

    [14]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [15]

    Zhu C, Wei D H, Wu Y L, Zhang Z, Zhang G H, Duan J F, Li L J, Zhu H L, Zhu Z Y, Chen Z Y 2019 J. Alloys Compd. 778 731Google Scholar

    [16]

    Yankowitz M, Chen S W, Polshyn H, Zhang Y X, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [17]

    Wu N N, Xu D M, Wang Z, Wang F L, Liu J R, Liu W, Shao Q, Liu H, Gao Q, Guo Z H 2019 Carbon 145 433Google Scholar

    [18]

    Cao Y, Dong S H, Liu S, He L, Gan L, Yu X M, Steigerwald M L, Wu X S, Liu Z F, Guo X F 2012 Angew. Chem. Int. Ed. 51 12228Google Scholar

    [19]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 物理学报 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [20]

    Xie F, Fan Z Q, Liu K, Wang H Y, Yu J H, Chen K Q 2015 Org. Electron. 27 41Google Scholar

    [21]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [22]

    Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar

    [23]

    Wan H, Zhou B H, Chen X, Sun C Q, Zhou G H 2012 J. Phys. Chem. C 116 2570Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [26]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [27]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [28]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [29]

    Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar

    [30]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [31]

    胡锐, 范志强, 张振华 2017 物理学报 66 138501Google Scholar

    Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 138501Google Scholar

    [32]

    Sun W Y, Cui X Q, Fan Z Q, Nie L Y, Zhang Z H 2019 J. Phys. D: Appl. Phys. 52 155102Google Scholar

    [33]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [34]

    Zhang D, Long M Q, Zhang X J, Ouyang F P, Li M J, Xu H 2015 J. Appl. Phys. 117 014311Google Scholar

    [35]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [36]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [37]

    Yan S L, Long M Q, Zhang X J, Xu H 2014 Phys. Lett. A 378 960Google Scholar

    [38]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [39]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstiche B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanper A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [40]

    Quantum ATK, version P-2013.08 https://www.synopsys.com [2013-8-1]

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 物理学报, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [3] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究. 物理学报, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [4] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [5] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响. 物理学报, 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [6] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流. 物理学报, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [7] 陈建, 熊康林, 冯加贵. 单层硅烯表面的CoPc分子吸附研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211607
    [8] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [9] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [10] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [11] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [12] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [13] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [14] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [15] 秦军瑞, 陈书明, 张超, 陈建军, 梁斌, 刘必慰. A-Z-A型石墨烯场效应晶体管吸附效应的第一性原理研究. 物理学报, 2012, 61(2): 023102. doi: 10.7498/aps.61.023102
    [16] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [17] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [18] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响. 物理学报, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [19] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用. 物理学报, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  4840
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-08-21
  • 上网日期:  2020-12-07
  • 刊出日期:  2020-12-20

/

返回文章
返回