搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桌面飞秒极紫外光原子超快动力学实验装置

海帮 张少锋 张敏 董达谱 雷建廷 赵冬梅 马新文

引用本文:
Citation:

桌面飞秒极紫外光原子超快动力学实验装置

海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文

A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons

Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen
PDF
HTML
导出引用
  • 飞秒极紫外光脉冲是研究原子分子超快动力学过程的重要工具, 是同步辐射及自由电子激光这样的大科学装置的重要补充, 而且具有非常诱人的发展前景. 本工作基于大功率飞秒近红外激光在气体介质中的高次谐波过程, 搭建了一套桌面飞秒极紫外光源. 使用充气的中空波导管产生高次谐波, 增大了驱动光与介质的作用长度, 显著提高了光子产额. 使用了光栅的圆锥衍射模式来实现高次谐波光子能量的选择, 在保证高衍射效率的同时, 减小了光栅衍射对于光脉冲的时间展宽效应. 通过实际测量, 光源的输出光子能量可覆盖20—90 eV的范围. 在光子能量为40 eV附近, 输出光子流强达1 × 1010 photons/s, 光子能量分辨约为0.4 eV. 该光源结合新研制的反应显微成像谱仪, 为研究极紫外光与原子分子的相互作用提供了独特的手段. 目前已成功开展多次原子及分子电离实验, 系统性能稳定.
    Femtosecond extreme ultraviolet (XUV) light pulses play an important role in investigating the ultrafast dynamics of atoms and molecules, and are complementary to the conventional large facilities like synchrotron radiation and free electron laser. We build a table-top femtosecond extreme ultraviolet light source based on the high-order harmonic generation (HHG) process of gaseous medium in a strong laser field. We implement HHG by focusing an intense IR laser into a 5 cm long gas-filled hollow waveguide, instead of the conventional tightly focusing geometry with gas jet. Inside the waveguide, the laser peak intensity is nearly constant and the gas pressure is well-controlled, making it possible to maintain the phase matching condition over an extended distance. And a fully coherent high harmonic beam builds up along the waveguide, leading to a dramatically higher HHG efficiency. Monochromatic XUV light pulses are obtained by spectral selection of the HHG through employing the conical diffraction method of grating. With this geometry used, the pulse broadening caused by wave front tilting during the diffraction can be strongly suppressed, especially for the case of grazing incidence. And the femtosecond temporal character of the light pulse can be preserved while keeping a high reflectivity. The temporal broadening of the XUV light pulse in our setup is estimated to be within 100 femtosecond. By using different noble gases, photons with energy values ranging from 20 eV to 90 eV are produced. For the 27th-order harmonic centered at 41.9 eV, the flux is measured to be 1 × 1010 photons per second, with an energy spread of 0.4 eV. In order to investigate the ultrafast dynamic behaviors of gaseous atoms and molecules with an HHG-based XUV source, we develop a reaction microscope with ultrahigh vacuum of about 10–11 mbar. The combination of HHG-based XUV with the newly developed reaction microscope provides a unique tool for studying the XUV photon and atom/molecule interaction. A series of experiments has been successfully carried out on the platform and the system shows good performance.
      通信作者: 张少锋, zhangshf@impcas.ac.cn ; 马新文, x.ma@impcas.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0402300)和国家自然科学基金(批准号: 11934004)资助的课题
      Corresponding author: Zhang Shao-Feng, zhangshf@impcas.ac.cn ; Ma Xin-Wen, x.ma@impcas.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant No. 11934004)
    [1]

    Zewail H A 1988 Science 242 1645Google Scholar

    [2]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002Google Scholar

    [3]

    Schoenlein R W, Chattopadhyay S, Chong H H W, Glover T E, Heimann P A, Shank C V, Zholents A A, Zolotorev M S 2000 Science 287 2237Google Scholar

    [4]

    Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [5]

    Brandi F, Neshev D, Ubachs W 2003 Phys. Rev. Lett. 91 163901Google Scholar

    [6]

    Rundquist A, Durfee C, Chang Z H, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [7]

    Frassetto F, Cacho C, Froud C A, Turcu I C E, Villoresi P, Bryan W A, Springate E, Poletto L 2011 Opt. Express 19 19169Google Scholar

    [8]

    Grazioli C, Callegari C, Ciavardini A, Coreno M, Frassetto F, Gauthier D, Golob D, Ivanov R, Kivimaki A, Mahieu B, Bucar B, Merhar M, Miotti P, Poletto L, Polo E, Ressel B, Spezzani C, De Ninno G 2014 Rev. Sci. Instrum. 85 023104Google Scholar

    [9]

    Plogmaker S, Terschlusen J A, Krebs N, Svanqvist M, Forsberg J, Cappel U B, Rubensson J E, Siegbahn H, Soderstrom J 2015 Rev. Sci. Instrum. 86 123107Google Scholar

    [10]

    Ojeda J, Arrell C A, Grilj J, Frassetto F, Mewes L, Zhang H, Van Mourik F, Poletto L, Chergui M 2016 Struct. Dyn. 3 023602Google Scholar

    [11]

    Von Conta A, Huppert M, Worner H J 2016 Rev. Sci. Instrum. 87 073102Google Scholar

    [12]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chinese Phys. Lett. 30 093201Google Scholar

    [13]

    Teng H, He X K, Zhao K, Wei Z Y 2018 Chin. Phys. B 27 074203Google Scholar

    [14]

    Niu Y, Liang H J, Liu Y, Liu F Y, Ma R, Ding D J 2017 Chin. Phys. B 26 074222Google Scholar

    [15]

    牛永 2017 博士学位论文 (吉林: 吉林大学)

    Niu Y 2017 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [16]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [17]

    Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X W 2020 Phys. Rev. A 101 052706Google Scholar

    [18]

    Zhang M, Najjari B, Hai B, Zhao D M, Lei J T, Dong D P, Zhang S F, Ma X W 2020 Chin. Phys. B 29 063302Google Scholar

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [20]

    Lewenstein M, Balcou P, Ivanov M Y, Lhuillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [21]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [22]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181Google Scholar

  • 图 1  高次谐波极紫外光源总体示意图

    Fig. 1.  Schematic of the HHG-based XUV source.

    图 2  高次谐波过程中的相位匹配 (a) 在相位匹配条件下, 不同原子释放的谐波相干叠加增强; (b) 使用气体射流产生高次谐波的紧聚焦模式; (c) 使用充气的中空波导管产生高次谐波

    Fig. 2.  Phase matching of the HHG: (a) Radiations from different atoms add up constructively when phase matched; (b) tightly focusing geometry of HHG with a gas jet; (c) HHG in a gas-filled hollow waveguide.

    图 3  光栅衍射中的波前倾斜导致脉冲展宽, Δtin和Δtout分别表示入射光和衍射光的脉冲宽度

    Fig. 3.  Pulse broadening caused by the wavefront tilt during grating diffraction, Δtin and Δtout are pulse widths of the input pulse and diffracted pulse respectively.

    图 4  光栅的圆锥衍射模式

    Fig. 4.  The conical diffraction geometry of gratings.

    图 5  使用不同惰性气体产生的高次谐波谱

    Fig. 5.  HHG spectra produced with noble gases.

    图 6  使用氩气产生的第27阶谐波的能谱, 红色实线为高斯拟合, 其中心能量为41.9 eV, 半高全宽0.4 eV

    Fig. 6.  Spectrum of the 27th harmonic produced with Ar gas. The red line is fitted result of Gauss distribution, centered at 41.9 eV with a FWHM of 0.4 eV.

    图 7  光子能量38.5 eV时, 氩原子电离实验的部分结果 (a) 光电子动量在探测器平面内的分布, 图中红色箭头表示光子偏振方向; (b) 3p电离通道(对应于(a)中的最外环)的角分布, 其中的角度为光电子出射方向与光子偏振方向夹角, 红色实线为使用偶极分布公式拟合的理论结果

    Fig. 7.  Experimental results of Ar ionization with 38.5 eV photons: (a) Photoelectron momentum distribution in the detector plan, and the polarization of the photon is indicated with the red arrow; (b) photoelectron angular distribution of the 3p channel (the outer most ring in (a)), as a function of the angle between the photoelectron emission and the photon polarization. Red line is the theoretical distribution fitted with dipole equation.

  • [1]

    Zewail H A 1988 Science 242 1645Google Scholar

    [2]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002Google Scholar

    [3]

    Schoenlein R W, Chattopadhyay S, Chong H H W, Glover T E, Heimann P A, Shank C V, Zholents A A, Zolotorev M S 2000 Science 287 2237Google Scholar

    [4]

    Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [5]

    Brandi F, Neshev D, Ubachs W 2003 Phys. Rev. Lett. 91 163901Google Scholar

    [6]

    Rundquist A, Durfee C, Chang Z H, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [7]

    Frassetto F, Cacho C, Froud C A, Turcu I C E, Villoresi P, Bryan W A, Springate E, Poletto L 2011 Opt. Express 19 19169Google Scholar

    [8]

    Grazioli C, Callegari C, Ciavardini A, Coreno M, Frassetto F, Gauthier D, Golob D, Ivanov R, Kivimaki A, Mahieu B, Bucar B, Merhar M, Miotti P, Poletto L, Polo E, Ressel B, Spezzani C, De Ninno G 2014 Rev. Sci. Instrum. 85 023104Google Scholar

    [9]

    Plogmaker S, Terschlusen J A, Krebs N, Svanqvist M, Forsberg J, Cappel U B, Rubensson J E, Siegbahn H, Soderstrom J 2015 Rev. Sci. Instrum. 86 123107Google Scholar

    [10]

    Ojeda J, Arrell C A, Grilj J, Frassetto F, Mewes L, Zhang H, Van Mourik F, Poletto L, Chergui M 2016 Struct. Dyn. 3 023602Google Scholar

    [11]

    Von Conta A, Huppert M, Worner H J 2016 Rev. Sci. Instrum. 87 073102Google Scholar

    [12]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chinese Phys. Lett. 30 093201Google Scholar

    [13]

    Teng H, He X K, Zhao K, Wei Z Y 2018 Chin. Phys. B 27 074203Google Scholar

    [14]

    Niu Y, Liang H J, Liu Y, Liu F Y, Ma R, Ding D J 2017 Chin. Phys. B 26 074222Google Scholar

    [15]

    牛永 2017 博士学位论文 (吉林: 吉林大学)

    Niu Y 2017 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [16]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [17]

    Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X W 2020 Phys. Rev. A 101 052706Google Scholar

    [18]

    Zhang M, Najjari B, Hai B, Zhao D M, Lei J T, Dong D P, Zhang S F, Ma X W 2020 Chin. Phys. B 29 063302Google Scholar

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [20]

    Lewenstein M, Balcou P, Ivanov M Y, Lhuillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [21]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [22]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181Google Scholar

  • [1] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [2] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [3] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射. 物理学报, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [4] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [5] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率. 物理学报, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [6] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211450
    [7] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光. 物理学报, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [8] 刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义. 基于固体薄片超连续飞秒光源驱动的高次谐波产生实验. 物理学报, 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [9] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [10] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [11] 俞祖卿, 何峰. 吸收多个远紫外光子生成的高次谐波的多重截止结构. 物理学报, 2016, 65(22): 224206. doi: 10.7498/aps.65.224206
    [12] 窦银萍, 谢卓, 宋晓林, 田勇, 林景全. Gd靶激光等离子体6.7nm光源的实验研究. 物理学报, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [13] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [14] 杨海艳, 王振宇, 李英姿, 张维然, 钱建强. 原子力显微镜探针悬臂几何结构变化对高次谐波信息增强的研究. 物理学报, 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [15] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [16] 刘昆陇, 洪伟毅, 王少义, 张庆斌, 陆培祥. 中红外偏振态门驱动产生高效的极宽超连续谱. 物理学报, 2011, 60(6): 063203. doi: 10.7498/aps.60.063203
    [17] 郭大龙, 马新文, 冯文天, 张少锋, 朱小龙. 反应显微成像谱仪动量及能量分辨因素分析. 物理学报, 2011, 60(11): 113401. doi: 10.7498/aps.60.113401
    [18] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [19] 刘硕, 陈高, 陈基根, 朱颀人. 采用双脉冲提高谐波谱的谱线密度. 物理学报, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [20] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究. 物理学报, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
计量
  • 文章访问数:  5237
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-08-10
  • 上网日期:  2020-11-25
  • 刊出日期:  2020-12-05

/

返回文章
返回