搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PbTe基热电接头界面性能

王雅宁 陈少平 樊文浩 郭敬云 吴玉程 王文先

引用本文:
Citation:

PbTe基热电接头界面性能

王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先

Interface performance of PbTe-based thermoelectric joints

Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian
PDF
HTML
导出引用
  • PbTe具有极高的热电转化效率, 本文以获得高质量、高转化效率的PbTe热电接头为目标. Pb的过量可以提高载流子浓度, 进而提高PbTe的热电性能, 复合电极能够改善界面势垒, 降低接触电阻. 传统方法通过抑制元素扩散降低接触电阻与提升剪切强度存在矛盾, 本文通过引入复合电极, 在电极材料与热电材料之间形成中间层, 抑制PbTe一侧Pb元素的扩散, 在降低接触电阻的同时提高了剪切强度. 通过调整PbTe的化学计量比, 得到样品Pb50.01Te49.99, 在Fe电极中混入Te和Pb, 将其与Pb50.01Te49.99一步热压烧结, 获得所需要的PbTe热电电极接头. 研究结果表明, 复合电极的接触电阻与纯Fe连接的相比, 接触电阻有近75%的降低, 为26.61 μΩ·cm2, 更加接近文献报道的最低值10 μΩ·cm2, 同时剪切强度相比于纯Fe电极也有较大幅度的提升, 这为获得性能优良的PbTe热电接头提供了新思路.
    The conversion efficiency of thermoelectric material PbTe is high. A high-quality and high-conversion-efficiency PbTe thermoelectric connector is investigated systematically. Excess Pb in composition can increase the carrier concentration and improve the thermoelectric performance of PbTe. The composite electrode can improve the interface barrier and reduce the contact resistance. Traditional processes of making contacts onto bulk crystalline PbTe-based materials do not work for reducing the contact resistance by inhibiting element diffusion and increasing the shear strength at the same time. In this study, we consider a composite electrode which can form an intermediate layer to suppress the diffusion of the Pb element on the PbTe side. This work not only reduces the contact resistance, but also increases the shear strength. The sample Pb50.01Te49.99 is obtained by adjusting the stoichiometric ratio of PbTe; Te and Pb are mixed in the Fe electrode. The composite electrode and Pb50.01Te49.99 are hot-pressed and sintered in one step to obtain the required PbTe thermoelectric electrode joint. We find that the contact resistance of the composite electrode is reduced by nearly 75% compared with that of metallization layer (Fe) connection. The smallest value is 26.610 μΩ·cm2 which is closer to the lowest 10 μΩ·cm2 reported in the literature than the counterpart of pure Fe electrode, and the shear strength is also greatly improved simultaneously. This work provides a new idea for obtaining PbTe thermoelectric connectors with excellent performance.
      通信作者: 陈少平, sxchenshaoping@163.com
    • 基金项目: 国家自然科学基金(批准号: 51775366)、山西省自然科学基金(批准号: 201801D121017, 201901D111116)和山西省归国学者基金(批准号: 2017-050, 2017-028)资助的课题
      Corresponding author: Chen Shao-Ping, sxchenshaoping@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51775366), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D121017, 201901D111116), and the Shanxi Provincial Foundation for Returned Scholars (Main Program), China (Grant Nos. 2017-050, 2017-028)
    [1]

    He J, Tritt T M 2017 Science 357 6358Google Scholar

    [2]

    Crane D, LaGrandeur J, Jovovic V, Ranalli M, Adldinger M, Poliquin E, Dean J, Kossakovski D, Mazar B, Maranville C 2012 J. Electron. Mater. 42 1582Google Scholar

    [3]

    Xie Y, Wu S, Yang C 2016 Appl. Energy 164 620Google Scholar

    [4]

    Shen J, Wang Z, Chu J, Bai S, Zhao X, Chen L, Zhu T 2019 ACS Appl. Mater. Interfaces 11 14182Google Scholar

    [5]

    LaLonde A D, Pei Y, Wang H, Jeffrey S G 2011 Mater. Today 14 526Google Scholar

    [6]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [7]

    Wu H J, Zhao L D, Zheng F S, Wu D, Pei Y L, Tong X, Kanatzidis M G, He J Q 2014 Nat. Commun. 5 4515Google Scholar

    [8]

    Wu D, Zhao L D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J F, Zhu Y, Kanatzidis M G, He J 2015 Energy Environ. Sci. 8 2056Google Scholar

    [9]

    Wu Y, Pei J, Zhang R 2020 J. Alloys Compd. 830 154451Google Scholar

    [10]

    Fu L, Yin M, Wu D, Li W, Feng D, Huang L, He J 2017 Energy Environ. Sci. 10 2030Google Scholar

    [11]

    LaLonde A D, Pei Y, Snyder G J 2011 Energy Environ. Sci. 4 6Google Scholar

    [12]

    Heremans J P, Thrush C M, Morelli D T 2005 J. Appl. Phys. 98 2229Google Scholar

    [13]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [14]

    Weinstein M, Mlavsky A I 1962 Rev. Sci. Instrum. 33 1119Google Scholar

    [15]

    Li C C, Drymiotis F, Liao L L, Dai M J, Liu C K, Chen C L, Chen Y Y, Kao C R, Snyder G J 2015 Energy Convers. Manage. 98 134Google Scholar

    [16]

    Hu X, Jood P, Ohta M, Kunii M, Nagase K, Nishiate H, Kanatzidis M G, Yamamoto A 2016 Energy Environ. Sci. 9 517Google Scholar

    [17]

    Zhang, Q H, Qiu P F, Chen L D 2017 Energy Environ. Sci. 10 4Google Scholar

    [18]

    Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V, Bhanumurthy K 2009 J. Phys. D: Appl. Phys. 42 015502Google Scholar

    [19]

    Li C C, Drymiotis F, Liao L L, Hung H T, Ke J H, Liu C K, Kao C R, Snyder G J 2015 J. Mater. Chem. C 3 10590Google Scholar

    [20]

    Ferreres X R, Aminorroaya Yamini S, Nancarrow M, Zhang C 2016 Mater. Des. 107 90Google Scholar

    [21]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [22]

    Oguni Y, Iida T, Matsumoto A, et al. 2007 Mrs Proceedings 09 1044Google Scholar

    [23]

    Sakamoto T, Iida T, Honda Y, Tada M, Sekiguchi T, Nishio K, Kogo Y, Takanashi Y 2012 J. Electron. Mater. 41 1805Google Scholar

    [24]

    邢媛, 李洪涛 2018 科技视界 8 1Google Scholar

    Xing Y, Li H T 2018 IDA Pap. 8 1Google Scholar

    [25]

    Schneider C, Schichtel P, Mogwitz B, Rohnke M, Janek J 2017 Solid State Ionics 303 119Google Scholar

    [26]

    夏海洋 2015 博士学位论文 (北京: 清华大学)

    Xia H Y 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [27]

    Zou J, Wu F S, Wang B, Liu H 2010 Electronics Process Technology 31 1

    [28]

    Wu H F, Zhang H J, Lu Y H, Yan Y H, Li H Y, Bao S N, He P M 2014 Chin. Phys. B 23 127901Google Scholar

    [29]

    Qin H, Guo B, Wang L, Zhang M, Xu B, Shi K, Pan T, Zhou L, Chen J, Qiu Y, Xi B, Sou I K, Yu D, Chen W Q, He H, Ye F, Mei J W, Wang G 2020 Nano Lett. 20 3160Google Scholar

    [30]

    Skipetrov E P, Kruleveckaya O V, Skipetrova L A, Slynko E I, Slynko V E 2014 Appl. Phys. Lett. 105 022101Google Scholar

  • 图 1  (a) 热电接头Fe/PbTe界面接触电阻测试示意图; (b) 热电接头PbTe/Fe抗剪强度测试示意图

    Fig. 1.  (a) Schematic diagram of thermoelectric joint Fe/PbTe interface contact resistance test; (b) schematic diagram of thermoelectric joint PbTe/Fe shear strength test.

    图 2  (a), (b), (c) PbTe, Pb50.01Te49.99, Pb49.99Te50.01以及文献[24]中本征PbTe的电阻率、Seebeck系数和功率因子随温度的变化

    Fig. 2.  (a), (b), (c) PbTe, Pb50.01Te49.99, Pb49.99Te50.01 and literature intrinsic PbTe[24] resistivity, Seebeck coefficient and power factor with temperature schematic diagram.

    图 3  (a) 1号样品 (Pb50.01Te49.99/Fe)EDS能谱分析图; (b), (c), (d) 样品2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/ Fe0.6Pb0.15Te0.25)的扫描图片

    Fig. 3.  (a) EDS spectrum analysis of sample 1 (Pb50.01Te49.99/Fe); (b), (c), (d) scan pictures of sample 2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/Fe0.6Pb0.15Te0.25).

    图 4  Te分别与Fe和Pb发生反应的吉布斯自由能对比

    Fig. 4.  Comparison of Gibbs free energy of Te reacting with Fe and Pb respectively.

    图 5  (PbTe)0.5Fe0.5和3号样品(Pb50.01Te49.99/Fe0.7Pb0.15Te0.15)中间层材料XRD图

    Fig. 5.  (PbTe)0.5Fe0.5 and sample 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15) XRD pattern of interlayer material.

    图 6  500 ℃ 保温10 d 后3号样品(Pb50.01Te49.99/Fe0.7Pb0.15Te0.15)的扫描图

    Fig. 6.  Scanning diagram of sample 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15) at 500 ℃ for 10 d.

    图 7  Fe电极与PbTe在接触前后的能带变化情况

    Fig. 7.  Energy band changes of Fe electrode and PbTe before and after contact.

    图 8  1 (Pb50.01Te49.99/Fe), 2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/ Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/Fe0.6Pb0.15Te0.25)号样品500 ℃, 保温10 d时前后接触电阻对比

    Fig. 8.  Samples 1 (Pb50.01Te49.99/Fe), 2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/Fe0.6Pb0.15Te0.25) contact resistance before and after aging at 500 ℃, 10 d.

    图 9  (a) 2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/ Fe0.6Pb0.15Te0.25)号热电接头的电极一侧XRD 图; (b) PbTe, Pb50.01Te49.99, Pb50.04 Te49.96, (PbTe)0.5Fe0.5的电阻率随温度的变化

    Fig. 9.  (a) XRD patterns of the electrode side of thermoelectric connectors 2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/ Fe0.6Pb0.15Te0.25); (b) variation of the resistivity of PbTe, Pb50.01Te49.99, (PbTe)0.5Fe0.5, Pb50.04Te49.96 with temperature.

    图 10  Pb50.01Te49.99/Fe0.7Pb0.15Te0.15连接界面处微观组织和元素面分布 (a) 微观组织; (b) Pb元素; (c) Te元素; (d) Fe元素

    Fig. 10.  Pb50.01Te49.99/Fe0.7Pb0.15Te0.15 microstructure and element surface division at the connection interface: (a) Microstructure; (b) Pb element; (c) Te element; (d) Fe element.

    图 11  1 (Pb50.01Te49.99/Fe), 2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/Fe0.6Pb0.15Te0.25)号样品10 d, 500 ℃时效前后剪切强度对比

    Fig. 11.  Shear strength comparison of samples 1 (Pb50.01Te49.99/Fe), 2 (Pb50.01Te49.99/Fe0.8Pb0.15Te0.05), 3 (Pb50.01Te49.99/Fe0.7Pb0.15Te0.15), 4 (Pb50.01Te49.99/ Fe0.6Pb0.15Te0.25) before and after aging at 500 ℃ 10 d.

    表 1  图3(b)中I、II区域的EDS能谱分析

    Table 1.  EDS spectrum analysis of region I and region II in Fig. 3(b).

    区域Pb/at%Te/at%Fe/at%
    I48.9751.030
    II03.2596.75
    下载: 导出CSV
  • [1]

    He J, Tritt T M 2017 Science 357 6358Google Scholar

    [2]

    Crane D, LaGrandeur J, Jovovic V, Ranalli M, Adldinger M, Poliquin E, Dean J, Kossakovski D, Mazar B, Maranville C 2012 J. Electron. Mater. 42 1582Google Scholar

    [3]

    Xie Y, Wu S, Yang C 2016 Appl. Energy 164 620Google Scholar

    [4]

    Shen J, Wang Z, Chu J, Bai S, Zhao X, Chen L, Zhu T 2019 ACS Appl. Mater. Interfaces 11 14182Google Scholar

    [5]

    LaLonde A D, Pei Y, Wang H, Jeffrey S G 2011 Mater. Today 14 526Google Scholar

    [6]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [7]

    Wu H J, Zhao L D, Zheng F S, Wu D, Pei Y L, Tong X, Kanatzidis M G, He J Q 2014 Nat. Commun. 5 4515Google Scholar

    [8]

    Wu D, Zhao L D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J F, Zhu Y, Kanatzidis M G, He J 2015 Energy Environ. Sci. 8 2056Google Scholar

    [9]

    Wu Y, Pei J, Zhang R 2020 J. Alloys Compd. 830 154451Google Scholar

    [10]

    Fu L, Yin M, Wu D, Li W, Feng D, Huang L, He J 2017 Energy Environ. Sci. 10 2030Google Scholar

    [11]

    LaLonde A D, Pei Y, Snyder G J 2011 Energy Environ. Sci. 4 6Google Scholar

    [12]

    Heremans J P, Thrush C M, Morelli D T 2005 J. Appl. Phys. 98 2229Google Scholar

    [13]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [14]

    Weinstein M, Mlavsky A I 1962 Rev. Sci. Instrum. 33 1119Google Scholar

    [15]

    Li C C, Drymiotis F, Liao L L, Dai M J, Liu C K, Chen C L, Chen Y Y, Kao C R, Snyder G J 2015 Energy Convers. Manage. 98 134Google Scholar

    [16]

    Hu X, Jood P, Ohta M, Kunii M, Nagase K, Nishiate H, Kanatzidis M G, Yamamoto A 2016 Energy Environ. Sci. 9 517Google Scholar

    [17]

    Zhang, Q H, Qiu P F, Chen L D 2017 Energy Environ. Sci. 10 4Google Scholar

    [18]

    Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V, Bhanumurthy K 2009 J. Phys. D: Appl. Phys. 42 015502Google Scholar

    [19]

    Li C C, Drymiotis F, Liao L L, Hung H T, Ke J H, Liu C K, Kao C R, Snyder G J 2015 J. Mater. Chem. C 3 10590Google Scholar

    [20]

    Ferreres X R, Aminorroaya Yamini S, Nancarrow M, Zhang C 2016 Mater. Des. 107 90Google Scholar

    [21]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [22]

    Oguni Y, Iida T, Matsumoto A, et al. 2007 Mrs Proceedings 09 1044Google Scholar

    [23]

    Sakamoto T, Iida T, Honda Y, Tada M, Sekiguchi T, Nishio K, Kogo Y, Takanashi Y 2012 J. Electron. Mater. 41 1805Google Scholar

    [24]

    邢媛, 李洪涛 2018 科技视界 8 1Google Scholar

    Xing Y, Li H T 2018 IDA Pap. 8 1Google Scholar

    [25]

    Schneider C, Schichtel P, Mogwitz B, Rohnke M, Janek J 2017 Solid State Ionics 303 119Google Scholar

    [26]

    夏海洋 2015 博士学位论文 (北京: 清华大学)

    Xia H Y 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [27]

    Zou J, Wu F S, Wang B, Liu H 2010 Electronics Process Technology 31 1

    [28]

    Wu H F, Zhang H J, Lu Y H, Yan Y H, Li H Y, Bao S N, He P M 2014 Chin. Phys. B 23 127901Google Scholar

    [29]

    Qin H, Guo B, Wang L, Zhang M, Xu B, Shi K, Pan T, Zhou L, Chen J, Qiu Y, Xi B, Sou I K, Yu D, Chen W Q, He H, Ye F, Mei J W, Wang G 2020 Nano Lett. 20 3160Google Scholar

    [30]

    Skipetrov E P, Kruleveckaya O V, Skipetrova L A, Slynko E I, Slynko V E 2014 Appl. Phys. Lett. 105 022101Google Scholar

  • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240112
    [2] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化. 物理学报, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [3] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [4] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [8] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [9] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [10] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究. 物理学报, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [11] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 物理学报, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [12] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [13] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [16] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [18] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [19] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [20] 马健新, 贾 瑜, 梁二军, 王晓春, 王 飞, 胡 行. PbTe(001)表面原子几何结构和电子结构的第一性原理计算. 物理学报, 2003, 52(12): 3155-3161. doi: 10.7498/aps.52.3155
计量
  • 文章访问数:  4468
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-08-07
  • 上网日期:  2020-12-11
  • 刊出日期:  2020-12-20

/

返回文章
返回