搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态电池中界面的结构演化和物质输运

拱越 谷林

引用本文:
Citation:

全固态电池中界面的结构演化和物质输运

拱越, 谷林

Structural evolution and matter transportation of the interface in all-solid-state battery

Gong Yue, Gu Lin
PDF
HTML
导出引用
  • 全固态电池中科学问题的本质在于引入的固态电解质的特性及全新的固-固界面的存在. 从构-效关系出发, 固-固界面和电解质自身的结构演化与物质输运过程决定了全固态电池的性能. 随着固态电解质材料研究的不断丰富, 目前全固态电池中的问题主要集中在固-固界面,界面处的组成和结构限制了全固态电池的性能. 根据固-固界面接触的情况不同, 本文按照固-固界面物理接触、化学接触和表面改性处理这三个层次总结与讨论全固态电池中固-固界面处的结构及其物质输运. 最后从功能材料功能性起源角度讨论局域对称性与宏观复杂体系下材料性能的关联.
    The essence of the scientific problem in all solid-state batteries lies in the properties of the introduced solid electrolyte and the existence of a new solid-solid interface. Starting from the structure-property relationship, the structural evolution of the solid-solid interface and the electrolyte itself, and the matter transport process determine the performance of the all-solid-state battery. With the continuous enrichment of solid electrolyte materials, the current problems in all solid-state batteries are mainly concentrated on the solid-solid interface. The composition and structure at the interface limit the performance of all solid-state batteries. According to the different situations of solid-solid interface contact, this article summarizes and discusses the structure and matter transport at the solid-solid interface in all solid-state batteries according to the three levels of solid-solid interface physical contact, chemical contact and surface modification. Finally, the relationship between local symmetry and material properties under the macroscopic complex system is discussed from the perspective of the functional origin of functional materials.
      通信作者: 谷林, l.gu@iphy.ac.cn
    • 基金项目: 中国科学院前沿科学重点研究项目(批准号: QYZDB-SSW-JSC035)、国家自然科学基金(批准号: 51672307, 51421002)和博士后创新人才支持计划资助的课题
      Corresponding author: Gu Lin, l.gu@iphy.ac.cn
    • Funds: Project supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciens (Grant No. QYZDB-SSW-JSC035), the National Natural Science Foundation of China (Grant Nos. 51672307, 51421002), and the China National Postdoctoral Program for Innovative Talents
    [1]

    Hu Y S 2016 Nat. Energy 1 16042Google Scholar

    [2]

    Ma C, Chen K, Liang C, Nan C W, Ishikawa R, More K, Chi M 2014 Energy Environ. Sci. 7 1638Google Scholar

    [3]

    Xiao D, Gu L 2020 Nano Sel. 1

    [4]

    Liu X Z, Tang Z X, Li Q H, Zhang Q H, Yu X Q, Gu L 2020 Cell Rep. Phys. Sci. 1 100066Google Scholar

    [5]

    Nie K, Hong Y, Qiu J, Li Q, Yu X, Li H, Chen L 2018 Front. Chem. 6 1Google Scholar

    [6]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar

    [7]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar

    [8]

    Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Chem. Rev. acs.chemrev.0 c00101

    [9]

    Gong Y, Zhang J, Jiang L, Shi J A, Zhang Q, Yang Z, Zou D, Wang J, Yu X, Xiao R, Hu Y S, Gu L, Li H, Chen L 2017 J. Am. Chem. Soc. 139 4274Google Scholar

    [10]

    Gong Y, Chen Y, Zhang Q, Meng F, Shi J A, Liu X, Liu X, Zhang J, Wang H, Wang J, Yu Q, Zhang Z, Xu Q, Xiao R, Hu Y S, Gu L, Li H, Huang X, Chen L 2018 Nat. Commun. 9 3341Google Scholar

    [11]

    Ohta S, Kobayashi T, Seki J, Asaoka T 2012 J. Power Sources 202 332Google Scholar

    [12]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar

    [13]

    Li X, Ren Z, Norouzi Banis M, Deng S, Zhao Y, Sun Q, Wang C, Yang X, Li W, Liang J, Li X, Sun Y, Adair K, Li R, Hu Y, Sham T K, Huang H, Zhang L, Lu S, Luo J, Sun X 2019 ACS Energy Lett. 4 2480Google Scholar

    [14]

    Qiu J, Liu X, Chen R, Li Q, Wang Y, Chen P, Gan L, Lee S J, Nordlund D, Liu Y, Yu X, Bai X, Li H, Chen L 2020 Adv. Funct. Mater. 30 1909392Google Scholar

    [15]

    Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar

    [16]

    Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough J B 2016 Proc. Natl. Acad. Sci. 113 13313Google Scholar

    [17]

    Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar

    [18]

    Chen X, He W, Ding L X, Wang S, Wang H 2019 Energy Environ. Sci. 12 938Google Scholar

    [19]

    Shiraki S, Shirasawa T, Suzuki T, Kawasoko H, Shimizu R, Hitosugi T 2018 ACS Appl. Mater. Interfaces 10 41732Google Scholar

    [20]

    Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair K R, Li R, Zhang C, Liu J, Kuo L Y, Hu Y, Sham T K, Zhang L, Yang R, Lu S, Song X, Sun X 2018 Appl. Mater. Interfaces 10 31240Google Scholar

    [21]

    Shi X, Pang Y, Wang B, Sun H, Wang X, Li Y, Yang J, Li H W, Zheng S 2020 Mater. Today Nano 10 1

    [22]

    Zhang Y, Tian Y, Xiao Y, Miara L J, Aihara Y, Tsujimura T, Shi T, Scott M C, Ceder G 2020 Adv. Energy Mater. 10 1903778Google Scholar

    [23]

    Zhang L, Yang T, Du C, Liu Q, Tang Y, Zhao J, Wang B, Chen T, Sun Y, Jia P, Li H, Geng L, Chen J, Ye H, Wang Z, Li Y, Sun H, Li X, Dai Q, Tang Y, Peng Q, Shen T, Zhang S, Zhu T, Huang J 2020 Nat. Nanotechnol. 15 94Google Scholar

    [24]

    Su Y, Ye L, Fitzhugh W, Wang Y, Gil-González E, Kim I, Li X 2020 Energy Environ. Sci. 13 908Google Scholar

  • 图 1  全固态电池中存在的多种界面结构示意图[5-8]

    Fig. 1.  Schematics of different interface structures in all-solid-state battery[5-8].

    图 2  物理接触界面的结构和物质输运 (a) LCO正极在全固态电池中结构演化[9]; (b) LNMO正极材料在全固态电池中的结构演化[10]; (c) LCO/LLZO固-固接触界面结构和物质交换的调控[12]; (d) NCM811/LGPS固-固接触界面在工作中的结构演化和物质交换[13]

    Fig. 2.  Structure and material transport of the physical contact interface: (a) The structural evolution of the LCO positive electrode in an all-solid-state battery[9]; (b) the structural evolution of LNMO cathode materials in all-solid-state batteries [10]; (c) regulation of LCO/LLZO solid-solid contact interface structure and material exchange[12]; (d) structural evolution and material exchange of NCM811/LGPS solid-solid contact interface during operation[13].

    图 3  化学接触界面的结构和物质输运 (a) Li/LAGP界面发生反应[15]; (b) Li/LZPO界面反应[16]; (c) Li/LLZO界面反应[17]

    Fig. 3.  Structure and mater transport of the chemical contact interface: (a) Reaction at the Li/LAGP interface[15]; (b) Li/LZPO interface reaction[16]; (c) Li/LLZO interface reaction[17].

    图 4  改善固-固界面物理接触 (a) 阴极支撑的固态电解质方案[18]; (b) 电极表面原子尺度结构调控全固态电池的界面[19]

    Fig. 4.  Improvement of the physical contact of the solid-solid interface: (a) A cathode-supported solid electrolyte membrane framework[18]; (b) the surface structure of the electrode controlled by the interface of the all-solid-state battery[19].

    图 5  电极和电解质的表面改性处理 (a) LAGP固态电解质的表面包覆处理[20]; (b) LBH固态电解质的原位LiF表面修饰[21]; (c) NCM523正极的表面包覆处理[22]; (d) 金属锂负极的表面处理[24].

    Fig. 5.  Surface modification treatment of electrode and electrolyte: (a) Surface treatment of LAGP solid electrolyte[20]; (b) LBH solid electrolyte with in-situ LiF surface modification[21]; (c) NCM523 positive electrode surface coating treatment[22]; (d) Surface treatment of lithium metal anode[24].

  • [1]

    Hu Y S 2016 Nat. Energy 1 16042Google Scholar

    [2]

    Ma C, Chen K, Liang C, Nan C W, Ishikawa R, More K, Chi M 2014 Energy Environ. Sci. 7 1638Google Scholar

    [3]

    Xiao D, Gu L 2020 Nano Sel. 1

    [4]

    Liu X Z, Tang Z X, Li Q H, Zhang Q H, Yu X Q, Gu L 2020 Cell Rep. Phys. Sci. 1 100066Google Scholar

    [5]

    Nie K, Hong Y, Qiu J, Li Q, Yu X, Li H, Chen L 2018 Front. Chem. 6 1Google Scholar

    [6]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar

    [7]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar

    [8]

    Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Chem. Rev. acs.chemrev.0 c00101

    [9]

    Gong Y, Zhang J, Jiang L, Shi J A, Zhang Q, Yang Z, Zou D, Wang J, Yu X, Xiao R, Hu Y S, Gu L, Li H, Chen L 2017 J. Am. Chem. Soc. 139 4274Google Scholar

    [10]

    Gong Y, Chen Y, Zhang Q, Meng F, Shi J A, Liu X, Liu X, Zhang J, Wang H, Wang J, Yu Q, Zhang Z, Xu Q, Xiao R, Hu Y S, Gu L, Li H, Huang X, Chen L 2018 Nat. Commun. 9 3341Google Scholar

    [11]

    Ohta S, Kobayashi T, Seki J, Asaoka T 2012 J. Power Sources 202 332Google Scholar

    [12]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar

    [13]

    Li X, Ren Z, Norouzi Banis M, Deng S, Zhao Y, Sun Q, Wang C, Yang X, Li W, Liang J, Li X, Sun Y, Adair K, Li R, Hu Y, Sham T K, Huang H, Zhang L, Lu S, Luo J, Sun X 2019 ACS Energy Lett. 4 2480Google Scholar

    [14]

    Qiu J, Liu X, Chen R, Li Q, Wang Y, Chen P, Gan L, Lee S J, Nordlund D, Liu Y, Yu X, Bai X, Li H, Chen L 2020 Adv. Funct. Mater. 30 1909392Google Scholar

    [15]

    Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar

    [16]

    Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough J B 2016 Proc. Natl. Acad. Sci. 113 13313Google Scholar

    [17]

    Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar

    [18]

    Chen X, He W, Ding L X, Wang S, Wang H 2019 Energy Environ. Sci. 12 938Google Scholar

    [19]

    Shiraki S, Shirasawa T, Suzuki T, Kawasoko H, Shimizu R, Hitosugi T 2018 ACS Appl. Mater. Interfaces 10 41732Google Scholar

    [20]

    Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair K R, Li R, Zhang C, Liu J, Kuo L Y, Hu Y, Sham T K, Zhang L, Yang R, Lu S, Song X, Sun X 2018 Appl. Mater. Interfaces 10 31240Google Scholar

    [21]

    Shi X, Pang Y, Wang B, Sun H, Wang X, Li Y, Yang J, Li H W, Zheng S 2020 Mater. Today Nano 10 1

    [22]

    Zhang Y, Tian Y, Xiao Y, Miara L J, Aihara Y, Tsujimura T, Shi T, Scott M C, Ceder G 2020 Adv. Energy Mater. 10 1903778Google Scholar

    [23]

    Zhang L, Yang T, Du C, Liu Q, Tang Y, Zhao J, Wang B, Chen T, Sun Y, Jia P, Li H, Geng L, Chen J, Ye H, Wang Z, Li Y, Sun H, Li X, Dai Q, Tang Y, Peng Q, Shen T, Zhang S, Zhu T, Huang J 2020 Nat. Nanotechnol. 15 94Google Scholar

    [24]

    Su Y, Ye L, Fitzhugh W, Wang Y, Gil-González E, Kim I, Li X 2020 Energy Environ. Sci. 13 908Google Scholar

  • [1] 吴成伟, 谢国锋, 周五星. 全固态锂离子电池内部热输运研究前沿. 物理学报, 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [2] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [3] 周逸凡, 杨慕紫, 佘峰权, 龚力, 张晓琪, 陈建, 宋树芹, 谢方艳. X射线光电子能谱在固态锂离子电池界面研究中的应用. 物理学报, 2021, 70(17): 178801. doi: 10.7498/aps.70.20210180
    [4] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [5] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [6] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性. 物理学报, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [7] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [8] 张锡奇, 闻利平, 江雷. 低维限域结构中水与物质的输运. 物理学报, 2019, 68(1): 018801. doi: 10.7498/aps.68.20182131
    [9] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [10] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [11] 黎栋栋, 周武. 二维原子晶体的低电压扫描透射电子显微学研究. 物理学报, 2017, 66(21): 217303. doi: 10.7498/aps.66.217303
    [12] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [13] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用. 物理学报, 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [14] 温才, 李方华, 邹进, 陈弘. AlSb/GaAs(001)失配位错的高分辨电子显微学研究. 物理学报, 2010, 59(3): 1928-1937. doi: 10.7498/aps.59.1928
    [15] 冀子武, 郑雨军, 徐现刚, 鲁云. ZnSe/BeTe Ⅱ型量子阱中界面结构对发光特性的影响. 物理学报, 2010, 59(11): 7986-7990. doi: 10.7498/aps.59.7986
    [16] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [17] 郭 力, 梁林云, 陈 冲, 王命泰, 孔明光, 王孔嘉. 聚苯胺基固态染料敏化太阳电池中电子输运性能的研究. 物理学报, 2007, 56(7): 4270-4276. doi: 10.7498/aps.56.4270
    [18] 高义华, 张 泽, 阎明朗, 赖武彦. NiFe/Mo多层膜界面的电子显微学研究. 物理学报, 1998, 47(5): 765-777. doi: 10.7498/aps.47.765
    [19] 孔庆平, 王翔, 周浩, 倪群慧. 蠕变-疲劳交互作用的电子显微学研究. 物理学报, 1986, 35(8): 1091-1094. doi: 10.7498/aps.35.1091
    [20] 李方华, 汤栋. 高分辨电子显微学中的赝弱相位物体近似. 物理学报, 1984, 33(8): 1196-1197. doi: 10.7498/aps.33.1196
计量
  • 文章访问数:  8995
  • PDF下载量:  649
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-10-24
  • 上网日期:  2020-11-18
  • 刊出日期:  2020-11-20

/

返回文章
返回