搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种点光源的自适应束斑X射线衍射仪的研制

刘俊 姜其立 帅麒麟 李融武 潘秋丽 程琳 王荣

引用本文:
Citation:

一种点光源的自适应束斑X射线衍射仪的研制

刘俊, 姜其立, 帅麒麟, 李融武, 潘秋丽, 程琳, 王荣

A type of X-ray diffractometer with adaptive X-ray spot sizes

Liu Jun, Jiang Qi-Li, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin, Wang Rong
PDF
HTML
导出引用
  • 为同时实现微米量级待测区域和毫米量级待测区域的物相分析, 以及对表面不平整样品准确的物相分析, 本实验室结合X射线衍射技术、CCD相机成像技术和毛细管微会聚X光调控技术, 研制了一款能根据待测区域大小自适应调节照射X射线束斑直径的点光源X射线衍射仪Hawk-II,其主要组成包括X射线源系统、六维联动运动系统、CCD相机、X射线探测系统和基于LabVIEW的软件控制系统. 为验证设备的可行性, 对表面不平整的人民币五角硬币进行分析, 发现Hawk-II测得的衍射图与标准PDF卡基本一致, 而帕纳科X-Pert Pro MPD测得的衍射图最大偏移角度高达0.52°. 对清代红绿彩瓷白釉和表面镀Cu, Fe的纳米材料采用不同直径的X射线束进行分析, 发现白釉的晶体分布较为均匀, 而纳米材料的表面镀膜不均匀. 应用Hawk-II分析一片西汉青铜, 根据其锈蚀点的大小自适应调节照射X射线束斑直径, 从而实现了物相的精确分析. 由分析结果可知, Hawk-II不仅拥有准确分析不规则样品的能力, 而且拥有从微米级到毫米级待测区域的物相分析能力, 并兼具能量色散X射线荧光分析功能, 在诸多领域具有广泛的应用前景.
    In order to realize micron scale to millimeter scale phase structure analysis, as well as accurate phase structure analysis of surface uneven samples, X-ray diffractometer named Hawk-II, which can adaptively adjust the diameter of irradiated X-ray beam spot according to the diameter of internal tangential circle at the measured point, is developed by combining X-ray diffraction technology, CCD camera imaging technology and slightly-focusing ploycapillary X-ray control technology. The X-ray source system, six-dimensional linkage motion system, CCD camera, detection system and control system based on LabVIEW are the main components of the Hawk-II. Compared with the 3°–5° divergence of the conventional X-ray source, the divergence of the X-ray emitted by the slightly-focusing polycapillary X-ray optics is only about 0.15° and also the intensity within the beam spot range is dozens of times stronger. Therefore, the shift of peak position will not appear due to the pores, curvature or uneven surface of the sample, when Hawk-II is used to analyze the samples with irregular surface. The diffraction pattern of the uneven Ren Min Bi five-cent coin are collected in the Hawk-II and PANalytical X-Pert Pro MPD conventional X-ray diffractometer respectively. By comparing the analysis results, it is found that the diffraction peaks measured by the X-Pert Pro MPD are shifted seriously, with a maximum deviation angle of 0.52°. While the diffraction peaks detected by the Hawk-II are basically consistent with the data from the standard PDF card, which verifies the advantages of the analysis of irregular samples by the Hawk-II. In order to explore the difference between different beam spots used for analysis at the same point, red and green porcelain fired in Qing dynasty and GaAs-based Cu and Fe plated films are analyzed by the Hawk-II. It is found that when the samples are relatively uniform, the intensities of diffraction peaks of different beam spots are relatively close, while when the samples are not uniform, the diffraction peaks vary greatly. Especially, some microcrystalline phases can be detected only with large beam spots. In addition, to verify the adaptive functionality of the Hawk-II, a bronze from the Western Han Dynasty, with different rust spots on it, is tested. It is found that the Hawk-II can adjust the beam spot size according to the different corrosion points, making the irradiation area coincide with the area to be analysed and the phase structure detected more accurately. Therefore, the Hawk-II is a general purpose X-ray diffractometer, which has the analytical capability from micron scale to millimeter scale and the energy dispersive X-ray fluorescence analysis function. Moreover, it has the advantages of the accurate analysis of irregular samples, fast detection speed, simple operation, etc. Based on the above analysis, the Hawk-II will be widely used in different fields.
      通信作者: 程琳, chenglin@bnu.edu.cn ; 王荣, wangr@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075028)资助的课题
      Corresponding author: Cheng Lin, chenglin@bnu.edu.cn ; Wang Rong, wangr@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.12075028)
    [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114

    [2]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16

    [3]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng., B 206 69

    [4]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697

    [5]

    Liu Z, Jia C, Li L, Li X L, Ji L Y, Wang L H, Lei Y, Wei X J 2018 J. Amer. Chem. Soc. 101 5229Google Scholar

    [6]

    Gordillo-Cruz E, Alvarez-Ramirez J, González F, Reyes J A 2018 Physica A 512 635

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143

    [8]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [9]

    姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳 2019 物理学报 68 124Google Scholar

    Jiang Q L, Duan Z M, Shuai Q L, Li R W, Pan Q L, Cheng L 2019 Acta Phys. Sin. 68 124Google Scholar

    [10]

    Noyan I C, Wang P C, Kaldor S K, Jordan-Sweet J L, Liniger E G 2000 Rev. Sci. Instrum. 71 1991

    [11]

    陈俊, 赫业军, 李玉德, 魏富忠, 王大椿, 罗萍, 颜一鸣 1999 核技术 22 3Google Scholar

    Chen J, He Y J, Li Y D, Wei F Z, Wang D C, Luo P, Yan Y M 1999 Nucl. Tech. 22 3Google Scholar

    [12]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [13]

    Alfeld M, Janssens K, Dik J, Nolf W, Snickt G 2011 J. Anal. Atom. Spect. 26 899Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 1493Google Scholar

    [16]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [17]

    Yang J, Tsuji K C, Lin X Y, Han D Y, Ding X L 2009 Thin Solid Films 517 3357Google Scholar

    [18]

    罗武干, 秦颍, 黄凤春, 胡雅丽, 王昌燧 2007 腐蚀科学与防护技术 19 157Google Scholar

    Luo W G, Qin Y, Huang F C, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 19 157Google Scholar

    [19]

    金普军, 秦颍, 龚明, 李涛, 朱铁权, 胡雅丽, 王昌燧 2007 中国腐蚀与防护学报 27 162Google Scholar

    Jin P J, Qin Y, Gong M, Li T, Zhu T Q, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 27 162Google Scholar

    [20]

    Bastidas J M, Alonso M P, Mora E M, Chico B 1995 Mater. Corros. 46 515

    [21]

    钟家让 2004 山西大学学报(自然科学版) 27 47Google Scholar

    Zhong J R 2004 J. Shanxi Univ. (Nat. Sci. Ed.) 27 47Google Scholar

    [22]

    祝鸿范, 周浩 1999 电化学 5 314Google Scholar

    Zhu H F, Zhou H 1999 Electrochemistry 5 314Google Scholar

    [23]

    周浩, 祝鸿范, 蔡兰坤 2005 文物保护与考古科学 17 22Google Scholar

    Zhou H, Zhu H F, Cai L K 2005 Sci. Conserv. Archaeol 17 22Google Scholar

  • 图 1  透镜束斑大小(FWHM)与探测点到透镜出口端距离(F)之间的关系

    Fig. 1.  The FWHM of X-ray beam spots varied with the distances (F) from the measured spots to the exit of polycapillary X-ray optics.

    图 2  毛细管微会聚X光透镜聚焦X射线的束斑变化示意图

    Fig. 2.  Diagram of changes in beam spot size of X-ray focus by the slightly-focusing polycapillary X-ray optics.

    图 3  点光源的自适应束斑X射线衍射仪(Hawk-II)结构示意图

    Fig. 3.  The schematic diagram of adaptive beam spot X-ray diffractometer with point source (Hawk-II).

    图 4  加Ni吸收片和不加Ni吸收片两种条件下的X射线散射谱

    Fig. 4.  X-ray scattering spectra with and without Ni filter.

    图 5  Si (1 1 1), Si (4 0 0)和GaAs (4 1 1)的衍射图

    Fig. 5.  The XRD patterns of Si (1 1 1), Si (4 0 0) and GaAs (4 1 1) crystals.

    图 6  人民币五角硬币及其测试点

    Fig. 6.  The RMB 5 Jiao coin and the detected point.

    图 7  两种衍射仪测量人民币五角硬币的衍射图

    Fig. 7.  The XRD patterns of the RMB 5 Jiao coin measured by two kinds of diffractometers.

    图 8  清代红绿彩瓷白釉不同照射束斑的衍射图对比

    Fig. 8.  The comparison of XRD patterns of Qing Dynasty red and green porcelain white glaze with different beam spots.

    图 9  GaAs为基底表面镀Cu和Fe的纳米薄膜在不同照射束斑下的衍射图对比

    Fig. 9.  The comparison of XRD patterns of GaAs based Cu and Fe plated film with different beam spots.

    图 10  西汉青铜及其测试点

    Fig. 10.  A piece of bronze produced in western Han Dynasty and the detected points.

    图 11  西汉青铜表面锈蚀区域和截面的XRD图

    Fig. 11.  XRD patterns of corrosion area and section of bronze surface of Western Han Dynasty.

    表 1  Si (1 1 1), Si (4 0 0)和GaAs (4 1 1)的测量数据对比

    Table 1.  The comparison of measurement data of Si (1 1 1), Si (4 0 0) and GaAs (4 1 1).

    参考数据 测量数据
    PDF卡2θ/(°)(h k l) 2θ/(°)
    Si(JCPDS 75-0590)28.443(1 1 1) 28.441
    Si(JCPDS 75-0590)69.131(4 0 0) 69.136
    GaAs(JCPDS 29-0615)90.141(5 1 1) 90.132
    下载: 导出CSV

    表 2  两种衍射仪的实验条件对比

    Table 2.  Measurement conditions of two diffractometers.

    Hawk-IIX-pert-pro-MPD
    靶材料CuCu
    单色器Ni吸收片Ni吸收片
    束斑尺寸/mm1.3 × 1.31 × 10
    电压/kV4040
    电流/mA4040
    步距角/(°)0.150.03
    探测时间/s220
    下载: 导出CSV

    表 3  各探测点的X射线束斑直径

    Table 3.  X-ray Beam diameter of each detected points.

    锈蚀点照射X射线束斑直径/μm
    绿锈1300
    红锈680
    黑锈1000
    截面800
    下载: 导出CSV
  • [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114

    [2]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16

    [3]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng., B 206 69

    [4]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697

    [5]

    Liu Z, Jia C, Li L, Li X L, Ji L Y, Wang L H, Lei Y, Wei X J 2018 J. Amer. Chem. Soc. 101 5229Google Scholar

    [6]

    Gordillo-Cruz E, Alvarez-Ramirez J, González F, Reyes J A 2018 Physica A 512 635

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143

    [8]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [9]

    姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳 2019 物理学报 68 124Google Scholar

    Jiang Q L, Duan Z M, Shuai Q L, Li R W, Pan Q L, Cheng L 2019 Acta Phys. Sin. 68 124Google Scholar

    [10]

    Noyan I C, Wang P C, Kaldor S K, Jordan-Sweet J L, Liniger E G 2000 Rev. Sci. Instrum. 71 1991

    [11]

    陈俊, 赫业军, 李玉德, 魏富忠, 王大椿, 罗萍, 颜一鸣 1999 核技术 22 3Google Scholar

    Chen J, He Y J, Li Y D, Wei F Z, Wang D C, Luo P, Yan Y M 1999 Nucl. Tech. 22 3Google Scholar

    [12]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [13]

    Alfeld M, Janssens K, Dik J, Nolf W, Snickt G 2011 J. Anal. Atom. Spect. 26 899Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 1493Google Scholar

    [16]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [17]

    Yang J, Tsuji K C, Lin X Y, Han D Y, Ding X L 2009 Thin Solid Films 517 3357Google Scholar

    [18]

    罗武干, 秦颍, 黄凤春, 胡雅丽, 王昌燧 2007 腐蚀科学与防护技术 19 157Google Scholar

    Luo W G, Qin Y, Huang F C, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 19 157Google Scholar

    [19]

    金普军, 秦颍, 龚明, 李涛, 朱铁权, 胡雅丽, 王昌燧 2007 中国腐蚀与防护学报 27 162Google Scholar

    Jin P J, Qin Y, Gong M, Li T, Zhu T Q, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 27 162Google Scholar

    [20]

    Bastidas J M, Alonso M P, Mora E M, Chico B 1995 Mater. Corros. 46 515

    [21]

    钟家让 2004 山西大学学报(自然科学版) 27 47Google Scholar

    Zhong J R 2004 J. Shanxi Univ. (Nat. Sci. Ed.) 27 47Google Scholar

    [22]

    祝鸿范, 周浩 1999 电化学 5 314Google Scholar

    Zhu H F, Zhou H 1999 Electrochemistry 5 314Google Scholar

    [23]

    周浩, 祝鸿范, 蔡兰坤 2005 文物保护与考古科学 17 22Google Scholar

    Zhou H, Zhu H F, Cai L K 2005 Sci. Conserv. Archaeol 17 22Google Scholar

  • [1] 华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运. 钒的冲击熔化原位X射线衍射测量研究. 物理学报, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [4] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [5] 张硕, 崔伟, 金海, 陈六彪, 王俊杰, 伍文涛, 吴秉骏, 夏经铠, 宋艳汝, 杨瑾屏, 翁祖谦, 刘志. 面向先进光源线站等大科学装置的低温X射线能谱仪原理及应用进展. 物理学报, 2021, 70(18): 180702. doi: 10.7498/aps.70.20210350
    [6] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211674
    [7] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [8] 姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳. 一种毛细管聚焦的微束X射线衍射仪. 物理学报, 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [9] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [10] 徐晓明, 苗伟, 陶琨. X射线衍射仪固有角度刻度误差对点阵参数计算精确度影响的研究. 物理学报, 2014, 63(13): 136001. doi: 10.7498/aps.63.136001
    [11] 李洪涛, 罗 毅, 席光义, 汪 莱, 江 洋, 赵 维, 韩彦军, 郝智彪, 孙长征. 基于X射线衍射的GaN薄膜厚度的精确测量. 物理学报, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [12] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [13] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [14] 许强, 王建宝, 袁健, 陆昉, 孙恒慧. 重掺硼快速退火分子束外延硅的X射线衍射研究. 物理学报, 1995, 44(3): 432-438. doi: 10.7498/aps.44.432
    [15] 张建中, 曹嬿妮. 发散X射线晶体衍射模拟研究. 物理学报, 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [16] 田亮光, 刘湘林, 许顺生, 韩效溪. 液相外延(BiTm)3(FeGa)5O12石榴石单晶薄膜的X射线双晶衍射仪研究. 物理学报, 1989, 38(10): 1704-1709. doi: 10.7498/aps.38.1704
    [17] 孙长德. 关于X射线衍射方程的Green函数解法. 物理学报, 1983, 32(8): 982-989. doi: 10.7498/aps.32.982
    [18] 徐济安, 胡静竹. 高压下X射线衍射技术. 物理学报, 1977, 26(6): 521-525. doi: 10.7498/aps.26.521
    [19] 吴德昌, 王仁卉. 锌的X射线热漫散衍射及弹性系数. 物理学报, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
    [20] 陈篪. X射线衍射仪的工作条件对干涉线纹的重心位置、均方宽度及线型的影响. 物理学报, 1961, 17(10): 465-481. doi: 10.7498/aps.17.465
计量
  • 文章访问数:  5459
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-31
  • 修回日期:  2020-08-28
  • 上网日期:  2020-12-19
  • 刊出日期:  2021-01-05

/

返回文章
返回