搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管

李雪 曹宝龙 王明昊 冯增勤 陈淑芬

引用本文:
Citation:

基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管

李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬

Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer

Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen
PDF
HTML
导出引用
  • 有机金属卤化钙钛矿作为发射体具有极高的色纯度和极低的成本, 但钙钛矿层普遍较差的形貌制约了器件的性能. 引入合适的聚合物可有效改善旋涂型钙钛矿薄膜的均匀性. 本文引入聚(4-苯乙烯磺酸盐) (PSS)改性的聚(3,4-乙撑二氧噻吩):PSS (PEDOT: PSS) 作为空穴注入层(HIL), 结合一步旋涂制备的三溴化铅甲基胺(MAPbBr3)和聚(环氧乙烷)(PEO)复合膜作为发光层, 制备了高效绿光钙钛矿发光二极管. 其中, PSS增加了PEDOT:PSS功函数, 降低了其与钙钛矿发光层间的注入势垒; 而掺杂PEO的钙钛矿膜致密且均匀, 覆盖率可以达到100%. 基于改性的空穴注入层和复合发光层, 我们最终获得了最大亮度为2476 cd·m–2、最大电流效率为7.6 cd·A–1的高效钙钛矿发光二极管.
    Appreciable progress of organometal halide perovskite materials has been achieved in recent years due to their controllable synthesis and excellent optoelectronic properties. And the potential uses of these perovskites in photovoltaics, light-emitting diodes (LEDs), photodetectors and lasers have been successfully demonstrated. Although organometal halide perovskites appear as emitters with extremely high color purity and low cost, the device performance is significantly limited by poor morphology of the perovskite layer. The addition of the polymer into the perovskite layer is a convenient and effective method to improve the homogeneity of the spin-coated perovskite film. In this work, we fabricate green perovskite light emitting diodes (PeLEDs) with poly(styrenesulfonate) (PSS)-modified poly(3,4-ethylenedioxythiophene):PSS (PEDOT:PSS) as the hole injection layer (HIL) and a single spin coating composite film consisting of methylammonium lead tribromide (MAPbBr3) and poly(ethylene oxide) (PEO) as the emissive layer. The PSS doping increases the work function of PEDOT:PSS and reduces the injection barrier between PEDOT:PSS HIL and MAPbBr3 perovskite, thus balancing the carriers within the PeLEDs. The PEO doping enables the MAPbBr3 to become a dense and uniform perovskite film with a ~100% coverage. With the above approaches, highly efficient PeLEDs with maximum luminance and current efficiency of 2476 cd·m–2 and 7.6 cd·A–1 are eventually acquired. This work provides a method of fabricating the high-coverage and high-efficiency PeLEDs.
      通信作者: 陈淑芬, iamsfchen@njupt.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0404501)、国家自然科学基金(批准号: 61274065)、江苏省杰出青年基金(批准号: BK20160039)和南京工程学院创新基金重大项目(批准号: CKJA201602)资助的课题
      Corresponding author: Chen Shu-Fen, iamsfchen@njupt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404501), the National Natural Science Foundation of China (Grant No. 61274065), the Science Fund for Distinguished Young Scholars of Jiangsu Province, China (Grant No. BK20160039), and the Major Projects of Innovation Fund of Nanjing Institute of Technology (Grant No. CKJA201602)
    [1]

    Yang W S, Park BW, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [2]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [3]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [4]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N S, Lee L C, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [5]

    Yu J C, Kim D W, Kim D B, Jung E D, Park J H, Lee A Y, Lee B R, Nuzzo D D, Friend R H, Song M H 2016 Adv. Mater. 28 6906Google Scholar

    [6]

    Huang C F, Keshtov M L, Chen F C 2016 ACS Appl. Mater. Interfaces 8 27006Google Scholar

    [7]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Sessolo M, Gil E L, Longo G, Bolink H J 2016 Top. Curr. Chem. 374 1Google Scholar

    [10]

    Naphade R, Zhao B, Richter J M, Booker E, Krishnamurthy S, Friend I H, Sadhanala A, Ogale S 2017 Adv. Mater. Interfaces. 4 1700562Google Scholar

    [11]

    Zhang X L, Wang W G, Xu B, Liu S, Dai H T, Bian D, Chen S M, Wang K, Sun X W 2017 Nano Energy 37 40Google Scholar

    [12]

    Yu J C, Kim D B, Jung E D, Lee B R, Song M H 2016 Nanoscale 8 7036Google Scholar

    [13]

    Wang Z, Cheng T, Wang F, Dai S, Tan Z 2016 Small 12 4412Google Scholar

    [14]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N A, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [15]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [16]

    Ji X, Peng X, Lei Y, Liu Z, Yang X 2017 Org. Electron. 43 167Google Scholar

    [17]

    Chen P, Xiong Z, Wu X, Shao M, Ma X, Xiong ZH, Gao C 2017 J. Phys. Chem. Lett. 8 1810Google Scholar

    [18]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [19]

    Masi S, Rizzo A, Aiello F, Balzano F, Uccello-Barretta G, Listorti A, Gigli G, Colella S 2015 Nanoscale 7 18956Google Scholar

    [20]

    Ng Y F, Kulkarni S A, Parida S, Jamaludin N F, Yantara N, Bruno A, Soci C, Mhaisalkar S, Mathews N 2017 Chem. Commun. 53 12004Google Scholar

    [21]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [22]

    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [23]

    Chan W C, Maxwel D J, Gao X, Bailey R E, Han M, Nie S 2002 Curr. Opin. Biotechnol. 13 1340

    [24]

    Vengrenovich R D, Gudyma Y V, Yarema S V 2001 Semiconductors 35 1378Google Scholar

    [25]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [26]

    Zhang X Y, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, Rogach A L 2016 Nano Lett. 16 1415Google Scholar

    [27]

    Yu H T, Lu Y, Feng Z Q, Wu Y N, Liu Z W, Xia P F, Qian J, Chen Y F, Liu L H, Cao K, Chen S F, Huang W 2019 Nanoscale 11 9103Google Scholar

  • 图 1  (a) 掺杂和未掺杂PSS的PEDOT:PSS的UPS光谱; (b) PeLEDs能级示意图

    Fig. 1.  (a) UPS spectra of PSS-doped and pristine PEDOT:PSS; (b) schematic energy-level of PeLEDs.

    图 2  不同PSS与PEDOT:PSS体积比的PeLEDs的特性 (a)亮度-电压特性; (b) 电流密度-电压特性; (c) 电流效率-电压特性

    Fig. 2.  The characteristics of PeLEDs with varying volume ratio of PSS and PEDOT:PSS: (a) Luminance-voltage; (b) current density-voltage; (c) current efficiency-voltage.

    图 3  不同体积比的MAPbBr3:PEO薄膜的SEM形貌图 (a) 1∶0; (b) 1∶0.75; (c) 1∶1; (d) 1∶1.25

    Fig. 3.  The SEM images of the MAPbBr3 films with different MAPbBr3:PEO volume ratio: (a) 1∶0; (b) 1∶0.75; (c) 1∶1; (d) 1∶1.25.

    图 4  本征MAPbBr3钙钛矿和MAPbBr3:PEO(1∶1)钙钛矿薄膜的XRD. 图中Pe为MAPbBr3的简写

    Fig. 4.  The XRD of the perovskite films of pristine MAPbBr3 and MAPbBr3:PEO (1∶1). Here, Pe is the abbreviation of MAPbBr3.

    图 5  MAPbBr3和MAPbBr3:PEO (1∶1)复合薄膜的PL光谱

    Fig. 5.  Photoluminescence spectra of the MAPbBr3 and MAPbBr3:PEO (1∶1) composite thin films.

    图 6  (a) 使用了MAPbBr3:PEO的器件结构示意图; 不同MAPbBr3:PEO体积比钙钛矿所制备出发光器件的(b)亮度-电压, (c)电流密度-电压, (d)电流效率-电压和(e)电致发光光谱曲线

    Fig. 6.  (a) PeLED structure using MAPbBr3:PEO, and the (b) luminance, (c) current density-voltage, (d) current efficiency-voltage and (e) electroluminant curves of PeLEDs with varying volume ratio of MAPbBr3:PEO.

  • [1]

    Yang W S, Park BW, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [2]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [3]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [4]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N S, Lee L C, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [5]

    Yu J C, Kim D W, Kim D B, Jung E D, Park J H, Lee A Y, Lee B R, Nuzzo D D, Friend R H, Song M H 2016 Adv. Mater. 28 6906Google Scholar

    [6]

    Huang C F, Keshtov M L, Chen F C 2016 ACS Appl. Mater. Interfaces 8 27006Google Scholar

    [7]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Sessolo M, Gil E L, Longo G, Bolink H J 2016 Top. Curr. Chem. 374 1Google Scholar

    [10]

    Naphade R, Zhao B, Richter J M, Booker E, Krishnamurthy S, Friend I H, Sadhanala A, Ogale S 2017 Adv. Mater. Interfaces. 4 1700562Google Scholar

    [11]

    Zhang X L, Wang W G, Xu B, Liu S, Dai H T, Bian D, Chen S M, Wang K, Sun X W 2017 Nano Energy 37 40Google Scholar

    [12]

    Yu J C, Kim D B, Jung E D, Lee B R, Song M H 2016 Nanoscale 8 7036Google Scholar

    [13]

    Wang Z, Cheng T, Wang F, Dai S, Tan Z 2016 Small 12 4412Google Scholar

    [14]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N A, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [15]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [16]

    Ji X, Peng X, Lei Y, Liu Z, Yang X 2017 Org. Electron. 43 167Google Scholar

    [17]

    Chen P, Xiong Z, Wu X, Shao M, Ma X, Xiong ZH, Gao C 2017 J. Phys. Chem. Lett. 8 1810Google Scholar

    [18]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [19]

    Masi S, Rizzo A, Aiello F, Balzano F, Uccello-Barretta G, Listorti A, Gigli G, Colella S 2015 Nanoscale 7 18956Google Scholar

    [20]

    Ng Y F, Kulkarni S A, Parida S, Jamaludin N F, Yantara N, Bruno A, Soci C, Mhaisalkar S, Mathews N 2017 Chem. Commun. 53 12004Google Scholar

    [21]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [22]

    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [23]

    Chan W C, Maxwel D J, Gao X, Bailey R E, Han M, Nie S 2002 Curr. Opin. Biotechnol. 13 1340

    [24]

    Vengrenovich R D, Gudyma Y V, Yarema S V 2001 Semiconductors 35 1378Google Scholar

    [25]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [26]

    Zhang X Y, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, Rogach A L 2016 Nano Lett. 16 1415Google Scholar

    [27]

    Yu H T, Lu Y, Feng Z Q, Wu Y N, Liu Z W, Xia P F, Qian J, Chen Y F, Liu L H, Cao K, Chen S F, Huang W 2019 Nanoscale 11 9103Google Scholar

计量
  • 文章访问数:  4517
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-23
  • 修回日期:  2020-09-21
  • 上网日期:  2021-02-04
  • 刊出日期:  2021-02-20

/

返回文章
返回