搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于多重散射的光学Hash函数

何文奇 陈嘉誉 张莲彬 卢大江 廖美华 彭翔

引用本文:
Citation:

一种基于多重散射的光学Hash函数

何文奇, 陈嘉誉, 张莲彬, 卢大江, 廖美华, 彭翔

Optical Hash function based on multiple scattering media

He Wen-Qi, Chen Jia-Yu, Zhang Lian-Bin, Lu Da-Jiang, Liao Mei-Hua, Peng Xiang
PDF
HTML
导出引用
  • 本文提出了一种基于光与多重散射介质相互作用的光学Hash函数构造方法. 该方法创新性地利用多重散射介质对相干调制光的天然随机散射作用, 实现了对调制光的“混淆”和“扩散”, 从而满足了Hash函数的核心功能要求: 高安全强度的单向编码/加密. 所设计的光电混合系统能有效地模拟Hash函数中的“压缩函数”, 结合具有特征提取功能的Sobel滤波器, 能实现将任意长度的输入数据压缩并加密为固定长度为256 bit的输出(即Hash值). 一系列仿真结果表明: 该方法所构造的光学Hash函数具有良好的“雪崩效应”和“抗碰撞性”, 其安全性能可比拟当前最为广泛使用的传统Hash函数(MD5和SHA-1).
    Hash functions, which can extract message digest from input messages as output, play an important role in digital signature and authentication. Meanwhile, Hash functions are essential in many cryptographic protocols and regimes. With the research becoming more and more in depth, a series of Hash functions is proposed, such as MD series and SHA series. At the same time, the security analysis and attacks against Hash functions are carried out. The security of Hash functions is threatened. In this case, how to improve the security of the Hash functions becomes the primary concern. In this paper, an optical Hash function based on the interaction between light and multiple scattering media is proposed. Unlike most of the traditional Hash functions which are based on mathematical transformations or complex logic operations, this method innovatively takes advantage of the natural random scattering effect of multiple scattering media on coherently modulated light, and realizes the “confusion” and “diffusion” of modulated light, which satisfies the core functional requirement of the Hash function: one-way encoding/encryption with strong security. The photoelectric hybrid system designed by this method can effectively simulate the "compression function" in the Hash function. Combined with the Sobel filter with feature extraction function, the input data of arbitrary length can be compressed and encrypted into the output with a fixed length of 256-bit (Hash value). The principle of the proposed optical Hash function can be described as follows. 1) Two 8-bit images with a size of 16×16 pixels are loaded in SLM1 (amplitude-only spatial modulator) and SLM2 (phase-only spatial modulator) respectively. 2) The coherent wavefront is modulated by SLM1 and SLM2, and then propagates on multiple scattering media. 3) A speckle pattern is recorded by CCD because of the confusion of multiple scattering media. 4) The features of the speckle pattern, which is extracted by Sobel filter, serve as the input of the next compression function. For the unpredicted and non-duplicated disorder multiple scattering media, it is tremendously difficult to determine the internal state of the multiple scattering media. Therefore, the proposed optical Hash function is considered to have a high security. A series of simulation results shows that the proposed optical Hash function has a good “avalanche effect” and “collision resistance”, and its security performance is comparable to that of the most widely used traditional Hash functions (MD5 and SHA-1).
      通信作者: 廖美华, liaomeihua@outlook.com ; 彭翔, xpeng@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61875129, 61705141, 61805152)、中德合作项目 (批准号: GZ1391, M-0044) 和广东省自然科学基金 (批准号: 2018A030310561)资助的课题
      Corresponding author: Liao Mei-Hua, liaomeihua@outlook.com ; Peng Xiang, xpeng@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875129, 61705141, 61805152), the Sino-German Center for Research Promotion (Grant Nos. GZ1391, M-0044), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030310561)
    [1]

    Schneier B, 1996 Government Information Quarterly 13 336

    [2]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [3]

    刘福民, 翟宏琛, 杨晓苹 2003 物理学报 52 2462Google Scholar

    Liu F M, Zhai H C, Yang X P 2003 Acta Phys. Sin. 52 2462Google Scholar

    [4]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584Google Scholar

    [5]

    Javidi B, Carnicer A, Yamaguchi M , Nomura T, Pérez-Cabré E 2016 J. Opt. 18 083001Google Scholar

    [6]

    Carnicer A, Montes-Usategui M, Arcos S, Juvells I 2005 Opt. Lett. 30 1644Google Scholar

    [7]

    Peng X, Zhang P, Wei H, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [8]

    彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629Google Scholar

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629Google Scholar

    [9]

    Cheng X C, Cai L Z, Wang Y R, Meng X F, Zhang H, Xu X F, Shen X X, Dong G Y 2008 Opt. Lett. 33 1575Google Scholar

    [10]

    Liao M H, He W Q, Lu D J, Wu J C, Peng X 2017 Opt. Laser. Eng. 98 34

    [11]

    Peng X, Wei H Z, Zhang P 2006 Opt. Lett. 31 3579Google Scholar

    [12]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [13]

    Cai J J, Shen X J, Lei M, Lin C, Dou S F 2015 Opt. Lett. 40 475Google Scholar

    [14]

    Volodin B L, Kippelen B, Meerholz K, Javidi B, Peyghambarian N 1996 Nature 383 58Google Scholar

    [15]

    Wang X G, Chen W, Mei S T, Chen X D 2015 Sci. Rep. 5 15668Google Scholar

    [16]

    何江涛, 何文奇, 廖美华, 卢大江, 彭翔 2017 物理学报 66 044202Google Scholar

    He J T, He W Q, Liao M H, Lu D J, Peng X 2017 Acta Phys. Sin. 66 044202Google Scholar

    [17]

    Rivest R L 1991 Lect. Notes. Comput. Sci. 537 303

    [18]

    Rivest R L https://www.rfc-editor.org/rfc/rfc1321 [2020-9-10]

    [19]

    He W Q, Peng X, Qin W, Meng X F 2010 Opt. Commun. 283 2328Google Scholar

    [20]

    何文奇, 彭翔, 祁永坤, 孟祥锋, 秦琬, 高志 2010 物理学报 59 1762Google Scholar

    He W Q, Peng X, Qi Y K, Meng X F, Qin W, Gao Z 2010 Acta Phys. Sin. 59 1762Google Scholar

    [21]

    Lai H, He W, Peng X 2013 Appl. Opt. 52 6213Google Scholar

    [22]

    Webster A F, Tavares S E 1986 Lect. Notes. Comput. Sci. 218 523

  • 图 1  Hash函数的结构

    Fig. 1.  Schematic diagram of the Hash function.

    图 2  实现基于多重散射的光学压缩函数的光电系统结构示意图

    Fig. 2.  Schematic diagram of optoelectronic architecture for realizing the optical compression function based on multiple scattering.

    图 3  初始伪随机图像的生成

    Fig. 3.  Flowchart for creating initial pseudo-random image.

    图 4  级联压缩流程图

    Fig. 4.  Flowchart of cascade compression.

    图 5  级联压缩过程

    Fig. 5.  Procedure of cascaded compression.

    图 6  轻微修改原始消息的过程

    Fig. 6.  Flowchart of modifying the bit of message.

    图 7  多重散射介质仿真模型

    Fig. 7.  Simulation model of the MSM.

    图 8  10000次测试下的$ {\mathrm{A}\mathrm{E}\mathrm{C}} $分布, 消息长度为 (a) 10 kbit, (b) 100 kbit, (c) 1000 kbit

    Fig. 8.  Distribution of AEC values in tests for the messages with (a) 10 kbit, (b) 100 kbit, and (c) 1000 kbit.

    表 1  雪崩效应测试结果

    Table 1.  Results of testing avalanche effect.

    10 kbit100 kbit1000 kbit平均值
    $ \overline{{\rm{AEC}}} $0.490.500.500.50
    ${\Delta }{B} $0.07700.06470.06360.0684
    下载: 导出CSV

    表 2  与MD5和SHA-1算法的比较

    Table 2.  Comparison with MD5 and SHA-1.

    本方案MD5SHA-1
    $ \overline{{\rm{AEC}}} $0.500.500.50
    ${\Delta }{B} $0.06840.04370.0392
    下载: 导出CSV
  • [1]

    Schneier B, 1996 Government Information Quarterly 13 336

    [2]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [3]

    刘福民, 翟宏琛, 杨晓苹 2003 物理学报 52 2462Google Scholar

    Liu F M, Zhai H C, Yang X P 2003 Acta Phys. Sin. 52 2462Google Scholar

    [4]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584Google Scholar

    [5]

    Javidi B, Carnicer A, Yamaguchi M , Nomura T, Pérez-Cabré E 2016 J. Opt. 18 083001Google Scholar

    [6]

    Carnicer A, Montes-Usategui M, Arcos S, Juvells I 2005 Opt. Lett. 30 1644Google Scholar

    [7]

    Peng X, Zhang P, Wei H, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [8]

    彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629Google Scholar

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629Google Scholar

    [9]

    Cheng X C, Cai L Z, Wang Y R, Meng X F, Zhang H, Xu X F, Shen X X, Dong G Y 2008 Opt. Lett. 33 1575Google Scholar

    [10]

    Liao M H, He W Q, Lu D J, Wu J C, Peng X 2017 Opt. Laser. Eng. 98 34

    [11]

    Peng X, Wei H Z, Zhang P 2006 Opt. Lett. 31 3579Google Scholar

    [12]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [13]

    Cai J J, Shen X J, Lei M, Lin C, Dou S F 2015 Opt. Lett. 40 475Google Scholar

    [14]

    Volodin B L, Kippelen B, Meerholz K, Javidi B, Peyghambarian N 1996 Nature 383 58Google Scholar

    [15]

    Wang X G, Chen W, Mei S T, Chen X D 2015 Sci. Rep. 5 15668Google Scholar

    [16]

    何江涛, 何文奇, 廖美华, 卢大江, 彭翔 2017 物理学报 66 044202Google Scholar

    He J T, He W Q, Liao M H, Lu D J, Peng X 2017 Acta Phys. Sin. 66 044202Google Scholar

    [17]

    Rivest R L 1991 Lect. Notes. Comput. Sci. 537 303

    [18]

    Rivest R L https://www.rfc-editor.org/rfc/rfc1321 [2020-9-10]

    [19]

    He W Q, Peng X, Qin W, Meng X F 2010 Opt. Commun. 283 2328Google Scholar

    [20]

    何文奇, 彭翔, 祁永坤, 孟祥锋, 秦琬, 高志 2010 物理学报 59 1762Google Scholar

    He W Q, Peng X, Qi Y K, Meng X F, Qin W, Gao Z 2010 Acta Phys. Sin. 59 1762Google Scholar

    [21]

    Lai H, He W, Peng X 2013 Appl. Opt. 52 6213Google Scholar

    [22]

    Webster A F, Tavares S E 1986 Lect. Notes. Comput. Sci. 218 523

  • [1] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [2] 于韬, 杨栋宇, 马锐, 祝玉鹏, 史祎诗. 基于增强型视觉密码的光学信息隐藏系统. 物理学报, 2020, 69(14): 144202. doi: 10.7498/aps.69.20200496
    [3] 何江涛, 何文奇, 廖美华, 卢大江, 彭翔. 一种基于双光束干涉和非线性相关的身份认证方法. 物理学报, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [4] 范德胜, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇. 基于相移干涉术的光学信息隐藏系统的软件实现. 物理学报, 2012, 61(24): 244204. doi: 10.7498/aps.61.244204
    [5] 哈斯乌力吉, 王雪阳, 郭翔宇, 仲召明, 范瑞清, 林殿阳, 何伟明, 吕志伟. 杂质颗粒对受激布里渊散射介质光学击穿阈值影响的研究. 物理学报, 2012, 61(14): 144207. doi: 10.7498/aps.61.144207
    [6] 史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟. 基于位相抽取的三维信息加密算法研究. 物理学报, 2011, 60(3): 034202. doi: 10.7498/aps.60.034202
    [7] 何文奇, 彭翔, 祁永坤, 孟祥锋, 秦琬, 高志. 基于非线性级联傅里叶变换的光学Hash函数构造. 物理学报, 2010, 59(3): 1762-1768. doi: 10.7498/aps.59.1762
    [8] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应. 物理学报, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [9] 李 立, 张新陆, 陈历学. 648nm激光雪崩抽运掺Tm晶体的本征光学双稳特性研究. 物理学报, 2008, 57(1): 278-284. doi: 10.7498/aps.57.278
    [10] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [11] 彭 翔, 汤红乔, 田劲东. 双随机相位编码光学加密系统的唯密文攻击. 物理学报, 2007, 56(5): 2629-2636. doi: 10.7498/aps.56.2629
    [12] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 张 祎, 何伟明. 受激布里渊散射介质光学击穿的研究. 物理学报, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [13] 彭 翔, 张 鹏, 位恒政, 于 斌. 双随机相位加密系统的已知明文攻击. 物理学报, 2006, 55(3): 1130-1136. doi: 10.7498/aps.55.1130
    [14] 马 晶, 谭立英, 冉启文. 小波分析在光学信息处理中的应用. 物理学报, 1999, 48(7): 1223-1229. doi: 10.7498/aps.48.1223
    [15] 刘思敏, 康明荐, 张光寅, 武原庆, 许京军. 新型Kerr介质中非线性光学效应的研究. 物理学报, 1991, 40(6): 923-925. doi: 10.7498/aps.40.923
    [16] 杨振寰, 庄松林, 赵天欣. 彩色图象的光学信息处理. 物理学报, 1981, 30(1): 57-65. doi: 10.7498/aps.30.57
    [17] 谭维翰. 光学成象的信息量. 物理学报, 1964, 20(11): 1135-1141. doi: 10.7498/aps.20.1135
    [18] 王之江. 关于光学信息量. 物理学报, 1964, 20(11): 1180-1181. doi: 10.7498/aps.20.1180
    [19] 谭维翰, 王之江. 关于光学成象的谱项分析及信息传递. 物理学报, 1960, 16(6): 305-315. doi: 10.7498/aps.16.305
    [20] 谭维翰. 相干情形下的反应函数以及光学信息的选择传送. 物理学报, 1960, 16(6): 316-323. doi: 10.7498/aps.16.316
计量
  • 文章访问数:  4418
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 修回日期:  2020-11-05
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回