搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有机吡啶盐晶体的太赫兹频率上转换探测

刘鹏翔 李伟 郭丽媛 祁峰 庞子博 李惟帆 汪业龙 刘朝阳

引用本文:
Citation:

基于有机吡啶盐晶体的太赫兹频率上转换探测

刘鹏翔, 李伟, 郭丽媛, 祁峰, 庞子博, 李惟帆, 汪业龙, 刘朝阳

Terahertz wave up-conversion detection based on organic nonlinear optical crystals

Liu Peng-Xiang, Li Wei, Guo Li-Yuan, Qi Feng, Pang Zi-Bo, Li Wei-Fan, Wang Ye-Long, Liu Zhao-Yang
PDF
HTML
导出引用
  • 利用激光泵浦国产有机吡啶盐4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐(4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate, DAST)晶体, 通过非线性频率上转换方法实现了室温运转的高灵敏、快响应、宽频段太赫兹探测. 高效生成了近红外上转换光, 采集到其脉冲包络和光谱, 获得了ns量级的时间分辨率, 并换算太赫兹波的频率, 实现了对太赫兹信息的全面表征. 与商用高莱探测器相比, 上转换方法在19 THz频点的探测灵敏度高4个数量级; 在可探测频率3.15—29.82 THz范围内, 响应度普遍高2—3个数量级. 结果表明: 室温下的光泵频率上转换探测方法在时间分辨率和响应度方面远优于传统的热探测器, 极大地提高了差频有源太赫兹系统的动态范围, 使差频源在太赫兹波谱分析和成像等领域具有更大的应用潜力.
    Laser pumped terahertz (THz) wave up-conversion detection with high sensitivity, fast responsivity and wide frequency band is achieved at room temperature, based on home-made organic nonlinear crystals 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST). Green laser pulses pumped KTiOPO4 optical parametric oscillators are utilized as the sources of dual-wavelength near-infrared (NIR) beams (1.3–1.6 μm, for THz-wave difference frequency generation (DFG)) and a single NIR beam (1.2–1.4 μm, for up-conversion detection). The nonlinear medium for both THz-DFG and detection is DAST (grown by CETC-46). A nanosecond-time-resolved THz pulse is obtained with an InGaAs p-i-n photo-diode. The spectrum of the up-converted NIR light is acquired, which allows us to measure the THz frequency indirectly. The sensitivity (also at room temperature) is 4 orders better at 19 THz than the sensitivity of a commercial thermal detector (Golay Cell). The wide frequency band operation is realized with different sets of band-pass filters, which cover the entire range from 3.15 to 29.82 THz except 8.4 THz of the strong absorption peak of DAST. The dynamic range of a THz source based on DFG can be commonly improved by 2–3 orders, by changing the traditional thermal detector with the up-conversion detection. The presented technology can promote the applications of DFG THz source in the fields of high-resolution spectroscopy and imaging.
      通信作者: 祁峰, qifeng@sia.cn
    • 基金项目: 中国科学院青年创新促进会(批准号: 2019204)、国家自然科学基金(批准号: 61505089, 61605235)和中国科学院机器人与智能制造创新研究院自主项目(批准号: C2019001)资助的课题
      Corresponding author: Qi Feng, qifeng@sia.cn
    • Funds: Project supported by Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019204), the National Natural Science Foundation of China (Grant Nos. 61505089, 61605235), and the Independent Project of Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences (Grant No. C2019001)
    [1]

    张存林 2008 太赫兹感测与成像 (北京: 国防工业出版社) 第1−5页

    Zhang C 2008 Terahertz Sensing and Imaging (Beijing: National Defense Industry Press) pp1−5 (in Chinese)

    [2]

    Liu Z Y, Qi F, Wang Y L, Liu P X, Li W F 2019 J. Infrared Milli. Terahz. Waves 40 606Google Scholar

    [3]

    Li Y F, Zhang Y T, Li T T, Li M Y, Chen Z L, Li Q Y, Zhao H L, Sheng Q, Shi W, Yao J Q 2020 Nano Lett. 20 5646Google Scholar

    [4]

    鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 物理学报 64 114206Google Scholar

    Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar

    [5]

    Liu P X, Qi F, Li W F, Liu Z Y, Wang Y L, Shi W, Yao J Q 2018 J. Infrared Milli. Terahz. Waves 39 1005Google Scholar

    [6]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [7]

    Shi W, Ding Y J, Fernelius N, Hopkins F K 2006 Appl. Phys. Lett. 88 101101Google Scholar

    [8]

    Ding Y J, Shi W 2006 Sol. State Electron. 50 1128Google Scholar

    [9]

    Ding Y J, Shi W 2006 Opt. Express 14 8311Google Scholar

    [10]

    Khan M J, Chen J C, Liau Z L, Kaushik S 2011 IEEE J. Sel. Top. Quantum Electron. 17 79Google Scholar

    [11]

    Guo R, Ikari T, Minamide H, Ito H 2008 Appl. Phys. Lett. 93 021106Google Scholar

    [12]

    Minamide H, Zhang J, Guo R, Miyamoto K, Ohno S, Ito H 2010 Appl. Phys. Lett. 97 121106Google Scholar

    [13]

    Minamide H, Hayashi S, Nawata K, Taira T, Shikata J, Kawase K 2014 J. Infrared Milli. Terahz. Waves 35 25Google Scholar

    [14]

    Kato M, Tripathi S R, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6425Google Scholar

    [15]

    Tripathi S R, Sugiyama Y, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6433Google Scholar

    [16]

    Takida Y, Nawata K, Suzuki S, Asada M, Minamide H 2017 Opt. Express 25 5389Google Scholar

    [17]

    Qi F, Nawata K, Hayashi S, Notake T, Matsukawa T, Minamide H 2014 Appl. Phys. Lett. 104 031110Google Scholar

    [18]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Opt. Lett. 39 1294Google Scholar

    [19]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Laser Phys. Lett. 11 085403Google Scholar

    [20]

    Fan S, Qi F, Notake T, Nawata K, Takida Y, Matsukawa T, Minamide H 2015 Opt. Express 23 7611Google Scholar

    [21]

    Jiang C Y, Liu J S, Sun B, Wang K J, Yao J Q 2010 J. Opt. 12 045202Google Scholar

    [22]

    Jiang C Y, Liu J S, Sun B, Wang K J, Li S X, Yao J Q 2010 Opt. Express 18 18180Google Scholar

    [23]

    蒋呈阅 2013 博士学位论文 (武汉: 华中科技大学)

    Jiang C Y 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [24]

    武聪, 孟大磊, 庞子博, 徐永宽, 程红娟 2017 压电与声光 39 722Google Scholar

    Wu C, Meng D L, Pang Z B, Xu Y K, Cheng H J 2017 Piezoelectrics & Acoustooptics 39 722Google Scholar

    [25]

    Cunningham P D, Hayden L M 2010 Opt. Express 18 23621

    [26]

    Takahashi Y, Adachi H, Tanuichi T, Takagi M, Hosokawa Y, Onzuka S, Brahadeeswaran S, Yoshimura M, Mori Y, Masuhara H, Sasaki T, Nakanishi H 2006 J. Photochem. Photobiol., A 183 247Google Scholar

    [27]

    Ito H, Suizu K, Yamashita T, Nawahara A, Sato T 2007 Jpn. J. Appl. Phys. 46 7321Google Scholar

    [28]

    Liu P X, Qi F, Pang Z B, Li W F, Lai Z P 2018 J. Phys. D: Appl. Phys. 51 395102Google Scholar

    [29]

    Bosshard Ch, Spreiter R, Degiorgi L, Gunter P 2002 Phys. Rev. B 66 205107Google Scholar

  • 图 1  基于DAST晶体太赫兹上转换探测系统示意图

    Fig. 1.  Schematic diagram of THz-wave up-conversion detection based on DAST crystals.

    图 2  太赫兹上转换探测光电二极管响应信号

    Fig. 2.  The up-converted signal acquired by a photo-diode.

    图 3  上转换探测过程中探测光、差频光及上转换光光谱

    Fig. 3.  Spectra of the detection light, dual-wavelength lights and up-converted light.

    图 4  不同太赫兹能量下的上转换探测响应幅值, 插图为在相应的太赫兹能量下商用高莱探测器的响应幅值

    Fig. 4.  Relationship between THz input energy and photo-diode output. Inset: the output of a Golay Cell at the corresponding THz energy.

    图 5  上转换与热探测获得的差频调谐曲线

    Fig. 5.  Tuning curves of THz-wave difference frequency generation obtained with up-conversion (squares) and thermal detection (circles).

  • [1]

    张存林 2008 太赫兹感测与成像 (北京: 国防工业出版社) 第1−5页

    Zhang C 2008 Terahertz Sensing and Imaging (Beijing: National Defense Industry Press) pp1−5 (in Chinese)

    [2]

    Liu Z Y, Qi F, Wang Y L, Liu P X, Li W F 2019 J. Infrared Milli. Terahz. Waves 40 606Google Scholar

    [3]

    Li Y F, Zhang Y T, Li T T, Li M Y, Chen Z L, Li Q Y, Zhao H L, Sheng Q, Shi W, Yao J Q 2020 Nano Lett. 20 5646Google Scholar

    [4]

    鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 物理学报 64 114206Google Scholar

    Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar

    [5]

    Liu P X, Qi F, Li W F, Liu Z Y, Wang Y L, Shi W, Yao J Q 2018 J. Infrared Milli. Terahz. Waves 39 1005Google Scholar

    [6]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [7]

    Shi W, Ding Y J, Fernelius N, Hopkins F K 2006 Appl. Phys. Lett. 88 101101Google Scholar

    [8]

    Ding Y J, Shi W 2006 Sol. State Electron. 50 1128Google Scholar

    [9]

    Ding Y J, Shi W 2006 Opt. Express 14 8311Google Scholar

    [10]

    Khan M J, Chen J C, Liau Z L, Kaushik S 2011 IEEE J. Sel. Top. Quantum Electron. 17 79Google Scholar

    [11]

    Guo R, Ikari T, Minamide H, Ito H 2008 Appl. Phys. Lett. 93 021106Google Scholar

    [12]

    Minamide H, Zhang J, Guo R, Miyamoto K, Ohno S, Ito H 2010 Appl. Phys. Lett. 97 121106Google Scholar

    [13]

    Minamide H, Hayashi S, Nawata K, Taira T, Shikata J, Kawase K 2014 J. Infrared Milli. Terahz. Waves 35 25Google Scholar

    [14]

    Kato M, Tripathi S R, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6425Google Scholar

    [15]

    Tripathi S R, Sugiyama Y, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6433Google Scholar

    [16]

    Takida Y, Nawata K, Suzuki S, Asada M, Minamide H 2017 Opt. Express 25 5389Google Scholar

    [17]

    Qi F, Nawata K, Hayashi S, Notake T, Matsukawa T, Minamide H 2014 Appl. Phys. Lett. 104 031110Google Scholar

    [18]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Opt. Lett. 39 1294Google Scholar

    [19]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Laser Phys. Lett. 11 085403Google Scholar

    [20]

    Fan S, Qi F, Notake T, Nawata K, Takida Y, Matsukawa T, Minamide H 2015 Opt. Express 23 7611Google Scholar

    [21]

    Jiang C Y, Liu J S, Sun B, Wang K J, Yao J Q 2010 J. Opt. 12 045202Google Scholar

    [22]

    Jiang C Y, Liu J S, Sun B, Wang K J, Li S X, Yao J Q 2010 Opt. Express 18 18180Google Scholar

    [23]

    蒋呈阅 2013 博士学位论文 (武汉: 华中科技大学)

    Jiang C Y 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [24]

    武聪, 孟大磊, 庞子博, 徐永宽, 程红娟 2017 压电与声光 39 722Google Scholar

    Wu C, Meng D L, Pang Z B, Xu Y K, Cheng H J 2017 Piezoelectrics & Acoustooptics 39 722Google Scholar

    [25]

    Cunningham P D, Hayden L M 2010 Opt. Express 18 23621

    [26]

    Takahashi Y, Adachi H, Tanuichi T, Takagi M, Hosokawa Y, Onzuka S, Brahadeeswaran S, Yoshimura M, Mori Y, Masuhara H, Sasaki T, Nakanishi H 2006 J. Photochem. Photobiol., A 183 247Google Scholar

    [27]

    Ito H, Suizu K, Yamashita T, Nawahara A, Sato T 2007 Jpn. J. Appl. Phys. 46 7321Google Scholar

    [28]

    Liu P X, Qi F, Pang Z B, Li W F, Lai Z P 2018 J. Phys. D: Appl. Phys. 51 395102Google Scholar

    [29]

    Bosshard Ch, Spreiter R, Degiorgi L, Gunter P 2002 Phys. Rev. B 66 205107Google Scholar

  • [1] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [2] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [3] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [6] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [7] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [8] 陈卫军, 卢克清, 惠娟利, 王春香, 于会敏, 胡凯. LiNbO3晶体界面非线性表面波的研究. 物理学报, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [9] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [10] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [11] 刘华刚, 胡明列, 刘博文, 宋有建, 柴路, 王清月. 高功率高重复频率多波长飞秒激光系统的研究. 物理学报, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [12] 孙博, 刘劲松, 凌福日, 王可嘉, 朱大庆, 姚建铨. 基于钽酸锂晶体的太赫兹波参量振荡器运转特性的研究. 物理学报, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [13] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析. 物理学报, 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [14] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [15] 李小燕, 郑志强, 冯卓宏, 刘 璟, 姜翠华, 孔令凯, 明 海. 掺铒锆钛酸铅镧陶瓷的上转换动力学分析. 物理学报, 2008, 57(5): 3244-3248. doi: 10.7498/aps.57.3244
    [16] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [18] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  5353
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2020-12-07
  • 上网日期:  2021-02-23
  • 刊出日期:  2021-03-05

/

返回文章
返回