搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性电子技术中的半导体材料性能调控概述

王宙恒 陈颖 郑坤炜 李海成 马寅佶 冯雪

引用本文:
Citation:

柔性电子技术中的半导体材料性能调控概述

王宙恒, 陈颖, 郑坤炜, 李海成, 马寅佶, 冯雪

Review on property regulation of semiconducting materials in flexible electronics

Wang Zhou-Heng, Chen Ying, Zheng Kun-Wei, Li Hai-Cheng, Ma Yin-Ji, Feng Xue
PDF
HTML
导出引用
  • 利用柔性电子技术对半导体材料性能调控研究具有重大的科学意义及应用价值. 该研究一方面突破了传统应变工程中受限于无机材料硬而脆的特性, 且引入应变多为固定值的局限; 另一方面也为基于无机功能材料的可延展柔性电子器件在大变形环境下的性能评估提供了理论基础. 因此, 柔性电子技术为针对半导体材料或其他功能材料的应变调控提供了一种新方法, 将有望应用在诸多需要材料性能周期性改变的新颖领域之中. 本文将首先简介柔性无机电子技术, 并对其中的两大关键技术: 基于纳米金刚石颗粒的减薄及转印技术进行重点阐述, 并探究两大关键技术对半导体电子器件性能的影响; 随后介绍半导体材料近些年在应变-能带结构耦合关系方向的研究成果, 并以基于屈曲砷化镓纳米薄膜条带及量子阱结构的研究为例, 阐明柔性电子技术运用于半导体材料性能调控的独特优势; 最后展望应变调控半导体特性的应用方向与发展前景.
    Flexible electronics technology plays an important role in regulating the properties of semiconducting materials, leading to the breakthrough in traditional strain engineering that is limited by the rigid and brittle inorganic materials and the fixed strain values. Thereby, the relevant research not only provides a new clue for strain regulation of semiconductor materials or other functional materials, but also lays a theoretical foundation for the performance evaluation of stretchable and flexible electronic devices based on inorganic functional materials in large-deformation environments. In this paper, the research progress of flexible inorganic electronics and strain effects on band structures, especially the property regulation of semiconducting materials in flexible electronics, is reviewed. Firstly, the nano-diamond particles based thinning process and the transfer printing are emphatically expounded with their influence on the properties of semiconducting electronics explored. In addition, the development and application of strain effect on band structure in recent years are introduced. In particular, the strain control based on buckling GaAs nanoribbon and buckling quantum well structure are studied to demonstrate the superior advantage of flexible electronics technology in the property regulation of semiconducting materials. The application and developing trend of strain engineering in the future are prospected finally.
      通信作者: 冯雪, fengxue@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11625207, 11902292)和浙江省重点研发计划(批准号: 2020C05004, 2019C05002)资助的课题
      Corresponding author: Feng Xue, fengxue@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11625207, 11902292) and Zhejiang Province Key Research and Development Project, China (Grant Nos. 2020C05004, 2019C05002)
    [1]

    Nathan A, Ahnood A, Cole M T, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D, Flewitt A J, Ferrari A C, Kelly M J, Robertson J, Amaratunga G A J, Milne W I 2012 Proc. IEEE 100 1486Google Scholar

    [2]

    Kim D H, Ghaffari R, Lu N, Rogers J A 2012 Annu. Rev. Biomed. Eng. 14 113Google Scholar

    [3]

    Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X 2020 Adv. Mater. 32 1902062Google Scholar

    [4]

    侯星宇, 郭传飞 2020 物理学报 69 178102Google Scholar

    Hou X Y, Guo C F 2020 Acta Phys. Sin. 69 178102Google Scholar

    [5]

    Khang D Y, Jiang H, Huang Y, Rogers J A 2006 Science 311 208Google Scholar

    [6]

    Qi J, Qian X, Qi L, Feng J, Shi D, Li J 2012 Nano Lett. 12 1224Google Scholar

    [7]

    Wang S D, Song J Z, Kim D H, Huang Y G, Rogers J A 2008 Appl. Phys. Lett. 93 023126Google Scholar

    [8]

    Gassenq A, Guilloy K, Dias G O, Pauc N, Rouchon D, Hartmann J M, Widiez J, Tardif S, Rieutord F, Escalante J, Duchemin I, Niquet Y M, Geiger R, Zabel T, Sigg H, Faist J, Chelnokov A, Reboud V, Calvo V 2015 Appl. Phys. Lett. 107 191904Google Scholar

    [9]

    Cai S, Zhang C, Li H, Lu S, Li Y, Hwang K C, Feng X 2017 AIP Adv. 7 035221Google Scholar

    [10]

    Feng X, Yang B D, Liu Y M, Wang Y, Dagdeviren C, Liu Z J, Carlson A, Li J Y, Huang Y G, Rogers J A 2011 ACS Nano 5 3326Google Scholar

    [11]

    江海波, 熊玲, 朱梦楠, 邓刚, 王小强 2015 半导体光电 36 930

    Jiang H B, Xiong L, Zhu M N, Deng G, Wang X Q 2015 Semicond. Optoelectron. 36 930

    [12]

    Chen C C A, Shu L S, Lee S R 2003 J. Mater. Process. Technol. 140 373Google Scholar

    [13]

    Gurnett K, Adams T 2006 III-Vs Review 19 38

    [14]

    唐晓琦, 淮璞 2014 半导体技术 39 442

    Tang X Q, H P 2014 Semicond. Technol. 39 442

    [15]

    Li H, Xu Y, Li X, Chen Y, Jiang Y, Zhang C, Lu B, Wang J, Ma Y, Chen Y, Huang Y, Ding M, Su H, Song G, Luo Y, Feng X 2017 Adv. Healthcare Mater. 6 1601013Google Scholar

    [16]

    Li H, Ma Y, Liang Z, Wang Z, Cao Y, Xu Y, Zhou H, Lu B, Chen Y, Han Z, Cai S, Feng X 2020 Natl. Sci. Rev 7 849Google Scholar

    [17]

    Sun Y, Kumar V, Adesida I, Rogers J A 2006 Adv. Mater. 18 2857Google Scholar

    [18]

    Choi W M, Song J Z, Khang D Y, Jiang H Q, Huang Y Y, Rogers J A 2007 Nano Lett. 7 1655Google Scholar

    [19]

    Moon M W, Lee S H, Sun J Y, Oh K H, Vaziri A, Hutchinson J W 2007 PANS 104 1130Google Scholar

    [20]

    Sun Y, Choi W M, Jiang H, Huang Y Y, Rogers J A 2006 Nat. Nanotechnol. 1 201Google Scholar

    [21]

    Jiang H Q, Sun Y G, Rogers J A, Huang Y G 2008 Int. J. Solids Struct. 45 2014Google Scholar

    [22]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 PANS 105 18675Google Scholar

    [23]

    Kim D H, Xiao J L, Song J Z, Huang Y G, Rogers J A 2010 Adv. Mater. 22 2108Google Scholar

    [24]

    Ko H C, Stoykovich M P, Song J, Malyarchuk V, Choi W M, Yu C J, Geddes Iii J B, Xiao J, Wang S, Huang Y, Rogers J A 2008 Nature 454 748Google Scholar

    [25]

    Park S I, Xiong Y J, Kim R H, Elvikis P, Meitl M, Kim D H, Wu J, Yoon J, Yu C J, Liu Z J, Huang Y G, Hwang K, Ferreira P, Li X L, Choquette K, Rogers J A 2009 Science 325 977Google Scholar

    [26]

    Zhang Y H, Fu H R, Su Y W, Xu S, Cheng H Y, Fan J A, Hwang K C, Rogers J A, Huang Y G 2013 Acta Mater. 61 7816Google Scholar

    [27]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543Google Scholar

    [28]

    Carlson A, Bowen A M, Huang Y, Nuzzo R G, Rogers J A 2012 Adv. Mater. 24 5284Google Scholar

    [29]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [30]

    Kim-Lee H J, Carlson A, Grierson D S, Rogers J A, Turner K T 2014 J. Appl. Phys. 115 143513Google Scholar

    [31]

    黄银, 李海成, 陈颖, 蔡世生, 张迎超, 陆炳卫, 冯雪 2016 中国科学: 物理学 力学 天文学 46 044607

    Huang Y, Li H C, Chen Y, Cai S S, Zhang Y C, Lu B W, Feng X 2016 Sci. China-Phys. Mech. Astron. 46 044607

    [32]

    Feng X, Meitl M A, Bowen A M, Huang Y, Nuzzo R G, Rogers J A 2007 Langmuir 23 12555Google Scholar

    [33]

    Chen H, Feng X, Huang Y, Huang Y, Rogers J A 2013 J. Mech. Phys. Solids 61 1737Google Scholar

    [34]

    Kim S, Wu J, Carlson A, Jin S H, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan S L, Chen W, Ferreira P M, Sitti M, Huang Y, Rogers J A 2010 PANS 107 17095Google Scholar

    [35]

    Eisenhaure J D, Rhee S I, Al-Okaily A M, Carlson A, Ferreira P M, Kim S 2014 J. Microelectromech. Syst. 23 1012Google Scholar

    [36]

    Huang Y, Zheng N, Cheng Z, Chen Y, Lu B, Xie T, Feng X 2016 ACS Appl. Mater. Interfaces 8 35628Google Scholar

    [37]

    Sim K, Chen S, Li Y, Kammoun M, Peng Y, Xu M, Gao Y, Song J, Zhang Y, Ardebili H, Yu C 2015 Sci. Rep. 5 16133Google Scholar

    [38]

    Linghu C, Wang C, Cen N, Wu J, Lai Z, Song J 2019 Soft Matter 15 30Google Scholar

    [39]

    Li H, Wang Z, Cao Y, Chen Y, Feng X 2021 ACS Appl. Mater. Interfaces 13 1612Google Scholar

    [40]

    Lee J, Wu J, Shi M, Yoon J, Park S I, Li M, Liu Z, Huang Y, Rogers J A 2011 Adv. Mater. 23 986Google Scholar

    [41]

    Song Y M, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi K J, Liu Z, Park H, Lu C, Kim R H, Li R, Crozier K B, Huang Y, Rogers J A 2013 Nature 497 95Google Scholar

    [42]

    Yan Z, Pan T, Xue M, Chen C, Cui Y, Yao G, Huang L, Liao F, Jing W, Zhang H, Gao M, Guo D, Xia Y, Lin Y 2017 Adv. Sci. 4 1700251Google Scholar

    [43]

    罗鸿羽, 令狐昌鸿, 宋吉舟 2018 中国科学: 物理学 力学 天文学 48 094610

    Luo H Y, Linghu C H, Song J Z 2018 Sci. China-Phys. Mech. Astron. 48 094610

    [44]

    Li H, Cao Y, Wang Z, Feng X 2019 Opt. Mater. Express 9 4023Google Scholar

    [45]

    Chen Y, Zhang Y, Liang Z, Cao Y, Han Z, Feng X 2020 npj Flexible Electron. 4 2Google Scholar

    [46]

    冯雪, 陆炳卫, 吴坚, 林媛, 宋吉舟, 宋国锋, 黄永刚 2014 物理学报 63 014201Google Scholar

    Feng X, Lu B W, Wu J, Lin Y, Song J Z, Song G F, Huang Y G 2014 Acta Phys. Sin. 63 014201Google Scholar

    [47]

    Li K, Chen L, Zhu F, Huang Y 2020 J. Appl. Mech. 88 021011

    [48]

    Ning S, Chu D, Yang F, Jiang H, Liu Z, Zhuang Z 2021 J. Appl. Mech. 88 051001Google Scholar

    [49]

    Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, Lu B, Wang X, Feng X 2017 Sci. Adv. 3 1701629Google Scholar

    [50]

    Cao Y, Zhang G, Zhang Y, Yue M, Chen Y, Cai S, Xie T, Feng X 2018 Adv. Funct. Mater. 28 1804604Google Scholar

    [51]

    Han Z, Cheng Z, Chen Y, Li B, Liang Z, Li H, Ma Y, Feng X 2019 Nanoscale 11 5942Google Scholar

    [52]

    Chen Y, Lu B, Chen Y, Feng X 2016 IEEE Electron Device Lett. 37 496Google Scholar

    [53]

    Zhang Y, Zheng N, Cao Y, Wang F, Wang P, Ma Y, Lu B, Hou G, Fang Z, Liang Z, Yue M, Li Y, Chen Y, Fu J, Wu J, Xie T, Feng X 2019 Sci. Adv. 5 1066Google Scholar

    [54]

    Liang Z, Cheng J, Zhao Q, Zhao X, Han Z, Chen Y, Ma Y, Feng X 2019 Adv. Mater. Technol. 4 1900317Google Scholar

    [55]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, Tiruvadi V R, Hwang S W, Vanleer A C, Wulsin D F, Davis K, Gelber C E, Palmer L, van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers J A, Litt B 2011 Nat. Neurosci. 14 1599Google Scholar

    [56]

    Aberg I, Cait Ni C, Hoyt J L 2006 IEEE Trans. Electron Devices 53 1021Google Scholar

    [57]

    Mazure C, Cayrefourcq I 2005 IEEE International SOI Conference Proceedings Honolulu, USA, October 3−6 2005 p1

    [58]

    Acosta T, Sood S 2006 IEEE Potentials 25 31

    [59]

    马建立 2012 博士学位论文 (西安: 西安电子科技大学)

    Ma J L 2012 Ph. D. Dissertation (Xian: Xidian University) (in Chinese)

    [60]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [61]

    Kim Y S, Choi J S, Kim J, Moon S J, Park B H, Yu J, Kwon J H, Kim M, Chung J S, Noh T W, Yoon J G 2010 Appl. Phys. Lett. 97 242907Google Scholar

    [62]

    杨远俊 2013 博士学位论文 (合肥: 中国科学技术大学)

    Yang Y J 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [63]

    Kim W J, Oh T, Song J, Ko E K, Li Y Y, Mun J, Kim B, Son J, Yang Z, Kohama Y, Kim M, Yang B J, Noh T W 2020 Sci. Adv. 6 1539

    [64]

    Xu R J, Huang J W, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141Google Scholar

    [65]

    傅德颐 2012 博士学位论文 (南京: 南京大学)

    Fu D Y 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [66]

    Khan M A, Yang J W, Simin G, Gaska R, Shur M S, Loye H C Z, Tamulaitis G, Zukauskas A, Smith D J, Chandrasekhar D, Bicknell-Tassius R 2000 Appl. Phys. Lett. 76 1161Google Scholar

    [67]

    Schwarze M, Tress W, Beyer B, Gao F, Scholz R, Poelking C, Ortstein K, Günther A A, Kasemann D, Andrienko D, Leo K 2016 Science 352 1446Google Scholar

    [68]

    Doi A, Shimano S, Inoue D, Kikitsu T, Hirai T, Hashizume D, Tokura Y, Taguchi Y 2019 APL Mater. 7 091107Google Scholar

    [69]

    吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强 2020 物理学报 69 154205Google Scholar

    Wu F, Guo Z W, Wu J J, Jiang H T, Du G Q 2020 Acta Phys. Sin. 69 154205Google Scholar

    [70]

    Kuo C P, Vong S K, Cohen R M, Stringfellow G B 1985 J. Appl. Phys. 57 5428Google Scholar

    [71]

    Danan G, Etienne B, Mollot F, Planel R, Jean-Louis A M, Alexandre F, Jusserand B, Le Roux G, Marzin J Y, Savary H, Sermage B 1987 Phys. Rev. B 35 6207Google Scholar

    [72]

    Li H, Tsai C, Koh A L, Cai L L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, Norskov J K, Zheng X L 2016 Nat. Mater. 15 48Google Scholar

    [73]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [74]

    Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C, Zheng X L 2015 Nat. Commun. 6 7381Google Scholar

    [75]

    Castellanos-Gomez A, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [76]

    Amorim B, Cortijo A, de Juan F, Grushine A G, Guinea F, Gutierrez-Rubio A, Ochoa H, Parente V, Roldan R, San-Jose P, Schiefele J, Sturla M, Vozmediano M A H 2016 Phys. Rep. 617 1Google Scholar

    [77]

    Wei B, Zheng K, Ji Y, Zhang Y, Zhang Z, Han X 2012 Nano Lett. 12 4595Google Scholar

    [78]

    Signorello G, Karg S, Björk M T, Gotsmann B, Riel H 2013 Nano Lett. 13 917Google Scholar

    [79]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [80]

    Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K, Bunch J S 2016 Nano Lett. 16 5836Google Scholar

    [81]

    Boztug C, Sanchez-Perez J R, Cavallo F, Lagally M G, Paiella R 2014 ACS Nano 8 3136Google Scholar

    [82]

    Petykiewicz J, Nam D, Sukhdeo D S, Gupta S, Buckley S, Piggott A Y, Vuckovic J, Saraswat K C 2016 Nano Lett. 16 2168Google Scholar

    [83]

    Pilon F T A, Lyasota A, Niquet Y M, Reboud V, Calvo V, Pauc N, Widiez J, Bonzon C, Hartmann J M, Chelnokov A, Faist J, Sigg H 2019 Nat. Commun. 10 2724Google Scholar

    [84]

    Sukhdeo D S, Nam D, Kang J H, Brongersma M L, Saraswat K C 2014 Photonics Res. 2 8Google Scholar

    [85]

    江佳霖 2019 博士学位论文 (武汉: 华中科技大学)

    Jiang J L 2019 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology)(in Chinese)

    [86]

    Sánchez-Pérez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PANS 108 18893Google Scholar

    [87]

    Süess M J, Geiger R, Minamisawa R A, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J, Sigg H 2013 Nat. Photonics 7 466Google Scholar

    [88]

    Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee K H, Kim Y, Min D, Jung Y, Qiu H D, Wang H, Fitzgerald E A, Tan C S, Nam D 2017 Nat. Commun. 8 1845Google Scholar

    [89]

    Wang Y, Chen Y, Li H, Li X, Chen H, Su H, Lin Y, Xu Y, Song G, Feng X 2016 ACS Nano 10 8199Google Scholar

    [90]

    Jiang H, Khang D Y, Song J, Sun Y, Huang Y, Rogers J A 2007 PANS 104 15607Google Scholar

    [91]

    Song J, Jiang H, Huang Y, Rogers J A 2009 J. Vac. Sci. Technol. A 27 1107Google Scholar

    [92]

    Zhang J, Xu Y, Jiang Y, Bai L, Chen H, Li J, Wang L, Wu W, Song G 2018 Nanoscale 10 12657Google Scholar

  • 图 1  柔性无机电子技术与半导体材料性能调控相结合, 设计优化半导体器件[6-10]

    Fig. 1.  Combine flexible inorganic electronics with the property regulation of semiconducting materials to design and optimize semiconductor devices[6-10].

    图 2  芯片减薄表征及性能测试 (a) 发光二极管(红光, 砷化镓)及光电探测器(硅)减薄后厚度方向和功能层表面SEM图片; 超薄半导体光电器件性能测试: 发光器件(红外光及红光LED)的电致发光(electro luminescence, EL)光谱, 以及光电探测器的绝对光谱响应(absolute specular reflectance, ASR)[15,16]. (b) MOS管减薄后光镜图; 减薄前后转移特性曲线及输出特性曲线对比

    Fig. 2.  Characterization and properties of the thin-film semiconductors fabricated by thinning process: (a) SEM images show the thickness of the ultrathin red light LED and photodetector. Insets is the microstructure of the chips after thinning via the nano-diamond thinning process. Electroluminescence (electro luminescence, EL) spectra of light-emitting elements (infrared light and red light) and the absolute spectral responsibility (absolute specular reflectance, ASR) of photodetector used in the skin-like device[15,16]; (b) optical image of the MOSFET after thinning process. The comparison of transfer characteristics at Vd = 3 V and output characteristics at Vg = 3 V of MOSFET between thin-film and original semiconductors.

    图 3  可延展柔性结构设计 (a) 单晶硅条带在PDMS基体上形成波浪结构的扫描电子显微镜照片[5]; (b) 砷化镓纳米条带在PDMS基体部分粘合形成波浪结构的扫描电子显微镜照片[20]; (c) 硅纳米薄膜在PDMS基体上的岛桥结构扫描电子显微镜照片[22,23]; (d) 蛇形导线岛桥结构互连的可拉伸CMOS反相器阵列的扫描电子显微镜照片[22,23]

    Fig. 3.  Designs of the flexible and stretchable structure: (a) SEM images of wavy, single-crystal Si ribbons[5]; (b) SEM images of an array of gallium arsenide nanoribbons in buckled shapes where bonding to the PDMS substrate occurs only at the positions of the troughs, as illustrated in the top inset[20]; (c) SEM image of a silicon nanomembrane in a buckled, mesh layout on PDMS[22,23]; (d) SEM images of an array of stretchable CMOS inverters with noncoplanar bridges that have serpentine layouts[22,23].

    图 4  转印技术 (a) 基于率相关印章的转印技术[32]; (b) 基于磁控的转印技术[38]; (c) 基于液滴的转印技术[39]

    Fig. 4.  Transfer printing techniques: (a) Kinetically controlled transfer printing[32]; (b) magnetically actuated transfer printing[38]; (c) transfer printing using droplet stamps[39].

    图 5  可延展柔性传感器在健康医疗中的应用 (a) 用于神经电刺激与电信号采集的螺旋电极[53]; (b) 与假手集成的柔性触觉传感器[54]; (c) 可延展柔性血氧及血压监测系统[16]

    Fig. 5.  Applications of stretchable and flexible electronics: (a) Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording[53]; (b) flexible tactile sensor integrated with a soft prosthetic hand[54]; (c) wearable skin-like optoelectronic systems for cuff-less continuous blood pressure monitor[16].

    图 6  低维材料中的应变-能带结构耦合关系 (a) 单轴拉伸调控氧化锌纳米线[77]; (b) 单轴拉压调控GaAs/Al0.3Ga0.7As/GaAs核壳结构纳米线[78]; (c) 双轴应变调控单层二硫化钼薄膜[80]

    Fig. 6.  Applications of strain effects on band structures to low-dimensional materials: (a) The shifts of the near-band-edge (NBE) peak for the 100 nm nano-wire (NW) by tension and the photon energy versus strain curves for ZnO NWs with different diameters[77]; (b) schematic of a GaAs-Al0.3Ga0.7As-GaAs core-shell nanowire and photoluminescence (PL) spectra measured for different values of applied uniaxial stress[78]; (c) the monolayer MoS2 bulged up or down depending on whether Δp is positive or negative and in situ measurements of PL spectra for a monolayer device[80].

    图 7  锗材料中的应变-能带结构耦合关系 (a) 双轴应变调控锗纳米薄膜[86]; (b) 锗微桥应变结构及光致发光谱(室温)[87]; (c) 单轴拉应变锗DBR激光器及不同泵浦光功率下的光致发光谱(80 K)[88]

    Fig. 7.  Applications of strain effects on band structures to Ge material: (a) Ge nanomembranes(NMs) and schematic sample mount and PL spectra of a 40 nm thick Ge NM at different levels of biaxial tensile strain[86]; (b) differential interference contrast light-microscopy image of a Ge/SOI structure and μPL spectra taken from structures with increasing longitudinal strain up to 3.1% and excitation in the center of the constriction[87]; (c) Schematic illustration of a typical Ge nanowire laser consisting of a strained nanowire surrounded by a pair of distributed Bragg reflectors (DBRs) on the stressing pads and power-dependent photoluminescence spectra of a 1.6% strained Ge nanowire with DBRs showing a gradual transition from broad spontaneous emission to multimode lasing oscillation (threshold, 3.0 kW/cm2)[88].

    图 8  功能纳米条带屈曲图及能隙与形貌叠加图[89] (a) GaAs纳米条带屈曲制备流程示意图; (b) 屈曲条带光镜图及3D形貌图; (c) 单个周期内GaAs的能隙变化与形貌变化叠加图

    Fig. 8.  Buckling-based method for measuring the strain-photonic coupling effect of GaAs nanoribbons[89]: (a) Schematic procedures of fabricating the AlxGa1–xAs wavy geometry on PDMS; (b) optical microscope image, 3D microstructure, and profile details of a single ribbon for three samples; (c) band gap mapping by PL scanning within one period in the wavy ribbon.

    图 9  半导体量子阱结构的应变调控[92] (a) Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As量子阱结构屈曲制备流程示意图; (b) 量子阱结构屈曲条带的能隙分布; (c) 量子阱结构实现能隙调控优化示意图

    Fig. 9.  Strain engineering in quantum well embedded in wavy nanoribbons[92]: (a) Schematic procedures of fabricating the wavy quantum well nanoribbons (QWNRs) on PDMS; (b) strain effect on the photonic property of the wavy QWNR; (c) band gap variation of a single QWNR as a function of wave intensity A/λ and the location of QW r/d within the fracture limit of the nanoribbon.

  • [1]

    Nathan A, Ahnood A, Cole M T, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D, Flewitt A J, Ferrari A C, Kelly M J, Robertson J, Amaratunga G A J, Milne W I 2012 Proc. IEEE 100 1486Google Scholar

    [2]

    Kim D H, Ghaffari R, Lu N, Rogers J A 2012 Annu. Rev. Biomed. Eng. 14 113Google Scholar

    [3]

    Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X 2020 Adv. Mater. 32 1902062Google Scholar

    [4]

    侯星宇, 郭传飞 2020 物理学报 69 178102Google Scholar

    Hou X Y, Guo C F 2020 Acta Phys. Sin. 69 178102Google Scholar

    [5]

    Khang D Y, Jiang H, Huang Y, Rogers J A 2006 Science 311 208Google Scholar

    [6]

    Qi J, Qian X, Qi L, Feng J, Shi D, Li J 2012 Nano Lett. 12 1224Google Scholar

    [7]

    Wang S D, Song J Z, Kim D H, Huang Y G, Rogers J A 2008 Appl. Phys. Lett. 93 023126Google Scholar

    [8]

    Gassenq A, Guilloy K, Dias G O, Pauc N, Rouchon D, Hartmann J M, Widiez J, Tardif S, Rieutord F, Escalante J, Duchemin I, Niquet Y M, Geiger R, Zabel T, Sigg H, Faist J, Chelnokov A, Reboud V, Calvo V 2015 Appl. Phys. Lett. 107 191904Google Scholar

    [9]

    Cai S, Zhang C, Li H, Lu S, Li Y, Hwang K C, Feng X 2017 AIP Adv. 7 035221Google Scholar

    [10]

    Feng X, Yang B D, Liu Y M, Wang Y, Dagdeviren C, Liu Z J, Carlson A, Li J Y, Huang Y G, Rogers J A 2011 ACS Nano 5 3326Google Scholar

    [11]

    江海波, 熊玲, 朱梦楠, 邓刚, 王小强 2015 半导体光电 36 930

    Jiang H B, Xiong L, Zhu M N, Deng G, Wang X Q 2015 Semicond. Optoelectron. 36 930

    [12]

    Chen C C A, Shu L S, Lee S R 2003 J. Mater. Process. Technol. 140 373Google Scholar

    [13]

    Gurnett K, Adams T 2006 III-Vs Review 19 38

    [14]

    唐晓琦, 淮璞 2014 半导体技术 39 442

    Tang X Q, H P 2014 Semicond. Technol. 39 442

    [15]

    Li H, Xu Y, Li X, Chen Y, Jiang Y, Zhang C, Lu B, Wang J, Ma Y, Chen Y, Huang Y, Ding M, Su H, Song G, Luo Y, Feng X 2017 Adv. Healthcare Mater. 6 1601013Google Scholar

    [16]

    Li H, Ma Y, Liang Z, Wang Z, Cao Y, Xu Y, Zhou H, Lu B, Chen Y, Han Z, Cai S, Feng X 2020 Natl. Sci. Rev 7 849Google Scholar

    [17]

    Sun Y, Kumar V, Adesida I, Rogers J A 2006 Adv. Mater. 18 2857Google Scholar

    [18]

    Choi W M, Song J Z, Khang D Y, Jiang H Q, Huang Y Y, Rogers J A 2007 Nano Lett. 7 1655Google Scholar

    [19]

    Moon M W, Lee S H, Sun J Y, Oh K H, Vaziri A, Hutchinson J W 2007 PANS 104 1130Google Scholar

    [20]

    Sun Y, Choi W M, Jiang H, Huang Y Y, Rogers J A 2006 Nat. Nanotechnol. 1 201Google Scholar

    [21]

    Jiang H Q, Sun Y G, Rogers J A, Huang Y G 2008 Int. J. Solids Struct. 45 2014Google Scholar

    [22]

    Kim D H, Song J Z, Choi W M, Kim H S, Kim R H, Liu Z J, Huang Y Y, Hwang K C, Zhang Y W, Rogers J A 2008 PANS 105 18675Google Scholar

    [23]

    Kim D H, Xiao J L, Song J Z, Huang Y G, Rogers J A 2010 Adv. Mater. 22 2108Google Scholar

    [24]

    Ko H C, Stoykovich M P, Song J, Malyarchuk V, Choi W M, Yu C J, Geddes Iii J B, Xiao J, Wang S, Huang Y, Rogers J A 2008 Nature 454 748Google Scholar

    [25]

    Park S I, Xiong Y J, Kim R H, Elvikis P, Meitl M, Kim D H, Wu J, Yoon J, Yu C J, Liu Z J, Huang Y G, Hwang K, Ferreira P, Li X L, Choquette K, Rogers J A 2009 Science 325 977Google Scholar

    [26]

    Zhang Y H, Fu H R, Su Y W, Xu S, Cheng H Y, Fan J A, Hwang K C, Rogers J A, Huang Y G 2013 Acta Mater. 61 7816Google Scholar

    [27]

    Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A 2013 Nat. Commun. 4 1543Google Scholar

    [28]

    Carlson A, Bowen A M, Huang Y, Nuzzo R G, Rogers J A 2012 Adv. Mater. 24 5284Google Scholar

    [29]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [30]

    Kim-Lee H J, Carlson A, Grierson D S, Rogers J A, Turner K T 2014 J. Appl. Phys. 115 143513Google Scholar

    [31]

    黄银, 李海成, 陈颖, 蔡世生, 张迎超, 陆炳卫, 冯雪 2016 中国科学: 物理学 力学 天文学 46 044607

    Huang Y, Li H C, Chen Y, Cai S S, Zhang Y C, Lu B W, Feng X 2016 Sci. China-Phys. Mech. Astron. 46 044607

    [32]

    Feng X, Meitl M A, Bowen A M, Huang Y, Nuzzo R G, Rogers J A 2007 Langmuir 23 12555Google Scholar

    [33]

    Chen H, Feng X, Huang Y, Huang Y, Rogers J A 2013 J. Mech. Phys. Solids 61 1737Google Scholar

    [34]

    Kim S, Wu J, Carlson A, Jin S H, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan S L, Chen W, Ferreira P M, Sitti M, Huang Y, Rogers J A 2010 PANS 107 17095Google Scholar

    [35]

    Eisenhaure J D, Rhee S I, Al-Okaily A M, Carlson A, Ferreira P M, Kim S 2014 J. Microelectromech. Syst. 23 1012Google Scholar

    [36]

    Huang Y, Zheng N, Cheng Z, Chen Y, Lu B, Xie T, Feng X 2016 ACS Appl. Mater. Interfaces 8 35628Google Scholar

    [37]

    Sim K, Chen S, Li Y, Kammoun M, Peng Y, Xu M, Gao Y, Song J, Zhang Y, Ardebili H, Yu C 2015 Sci. Rep. 5 16133Google Scholar

    [38]

    Linghu C, Wang C, Cen N, Wu J, Lai Z, Song J 2019 Soft Matter 15 30Google Scholar

    [39]

    Li H, Wang Z, Cao Y, Chen Y, Feng X 2021 ACS Appl. Mater. Interfaces 13 1612Google Scholar

    [40]

    Lee J, Wu J, Shi M, Yoon J, Park S I, Li M, Liu Z, Huang Y, Rogers J A 2011 Adv. Mater. 23 986Google Scholar

    [41]

    Song Y M, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi K J, Liu Z, Park H, Lu C, Kim R H, Li R, Crozier K B, Huang Y, Rogers J A 2013 Nature 497 95Google Scholar

    [42]

    Yan Z, Pan T, Xue M, Chen C, Cui Y, Yao G, Huang L, Liao F, Jing W, Zhang H, Gao M, Guo D, Xia Y, Lin Y 2017 Adv. Sci. 4 1700251Google Scholar

    [43]

    罗鸿羽, 令狐昌鸿, 宋吉舟 2018 中国科学: 物理学 力学 天文学 48 094610

    Luo H Y, Linghu C H, Song J Z 2018 Sci. China-Phys. Mech. Astron. 48 094610

    [44]

    Li H, Cao Y, Wang Z, Feng X 2019 Opt. Mater. Express 9 4023Google Scholar

    [45]

    Chen Y, Zhang Y, Liang Z, Cao Y, Han Z, Feng X 2020 npj Flexible Electron. 4 2Google Scholar

    [46]

    冯雪, 陆炳卫, 吴坚, 林媛, 宋吉舟, 宋国锋, 黄永刚 2014 物理学报 63 014201Google Scholar

    Feng X, Lu B W, Wu J, Lin Y, Song J Z, Song G F, Huang Y G 2014 Acta Phys. Sin. 63 014201Google Scholar

    [47]

    Li K, Chen L, Zhu F, Huang Y 2020 J. Appl. Mech. 88 021011

    [48]

    Ning S, Chu D, Yang F, Jiang H, Liu Z, Zhuang Z 2021 J. Appl. Mech. 88 051001Google Scholar

    [49]

    Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, Lu B, Wang X, Feng X 2017 Sci. Adv. 3 1701629Google Scholar

    [50]

    Cao Y, Zhang G, Zhang Y, Yue M, Chen Y, Cai S, Xie T, Feng X 2018 Adv. Funct. Mater. 28 1804604Google Scholar

    [51]

    Han Z, Cheng Z, Chen Y, Li B, Liang Z, Li H, Ma Y, Feng X 2019 Nanoscale 11 5942Google Scholar

    [52]

    Chen Y, Lu B, Chen Y, Feng X 2016 IEEE Electron Device Lett. 37 496Google Scholar

    [53]

    Zhang Y, Zheng N, Cao Y, Wang F, Wang P, Ma Y, Lu B, Hou G, Fang Z, Liang Z, Yue M, Li Y, Chen Y, Fu J, Wu J, Xie T, Feng X 2019 Sci. Adv. 5 1066Google Scholar

    [54]

    Liang Z, Cheng J, Zhao Q, Zhao X, Han Z, Chen Y, Ma Y, Feng X 2019 Adv. Mater. Technol. 4 1900317Google Scholar

    [55]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, Tiruvadi V R, Hwang S W, Vanleer A C, Wulsin D F, Davis K, Gelber C E, Palmer L, van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers J A, Litt B 2011 Nat. Neurosci. 14 1599Google Scholar

    [56]

    Aberg I, Cait Ni C, Hoyt J L 2006 IEEE Trans. Electron Devices 53 1021Google Scholar

    [57]

    Mazure C, Cayrefourcq I 2005 IEEE International SOI Conference Proceedings Honolulu, USA, October 3−6 2005 p1

    [58]

    Acosta T, Sood S 2006 IEEE Potentials 25 31

    [59]

    马建立 2012 博士学位论文 (西安: 西安电子科技大学)

    Ma J L 2012 Ph. D. Dissertation (Xian: Xidian University) (in Chinese)

    [60]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [61]

    Kim Y S, Choi J S, Kim J, Moon S J, Park B H, Yu J, Kwon J H, Kim M, Chung J S, Noh T W, Yoon J G 2010 Appl. Phys. Lett. 97 242907Google Scholar

    [62]

    杨远俊 2013 博士学位论文 (合肥: 中国科学技术大学)

    Yang Y J 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [63]

    Kim W J, Oh T, Song J, Ko E K, Li Y Y, Mun J, Kim B, Son J, Yang Z, Kohama Y, Kim M, Yang B J, Noh T W 2020 Sci. Adv. 6 1539

    [64]

    Xu R J, Huang J W, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141Google Scholar

    [65]

    傅德颐 2012 博士学位论文 (南京: 南京大学)

    Fu D Y 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [66]

    Khan M A, Yang J W, Simin G, Gaska R, Shur M S, Loye H C Z, Tamulaitis G, Zukauskas A, Smith D J, Chandrasekhar D, Bicknell-Tassius R 2000 Appl. Phys. Lett. 76 1161Google Scholar

    [67]

    Schwarze M, Tress W, Beyer B, Gao F, Scholz R, Poelking C, Ortstein K, Günther A A, Kasemann D, Andrienko D, Leo K 2016 Science 352 1446Google Scholar

    [68]

    Doi A, Shimano S, Inoue D, Kikitsu T, Hirai T, Hashizume D, Tokura Y, Taguchi Y 2019 APL Mater. 7 091107Google Scholar

    [69]

    吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强 2020 物理学报 69 154205Google Scholar

    Wu F, Guo Z W, Wu J J, Jiang H T, Du G Q 2020 Acta Phys. Sin. 69 154205Google Scholar

    [70]

    Kuo C P, Vong S K, Cohen R M, Stringfellow G B 1985 J. Appl. Phys. 57 5428Google Scholar

    [71]

    Danan G, Etienne B, Mollot F, Planel R, Jean-Louis A M, Alexandre F, Jusserand B, Le Roux G, Marzin J Y, Savary H, Sermage B 1987 Phys. Rev. B 35 6207Google Scholar

    [72]

    Li H, Tsai C, Koh A L, Cai L L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, Norskov J K, Zheng X L 2016 Nat. Mater. 15 48Google Scholar

    [73]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [74]

    Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C, Zheng X L 2015 Nat. Commun. 6 7381Google Scholar

    [75]

    Castellanos-Gomez A, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [76]

    Amorim B, Cortijo A, de Juan F, Grushine A G, Guinea F, Gutierrez-Rubio A, Ochoa H, Parente V, Roldan R, San-Jose P, Schiefele J, Sturla M, Vozmediano M A H 2016 Phys. Rep. 617 1Google Scholar

    [77]

    Wei B, Zheng K, Ji Y, Zhang Y, Zhang Z, Han X 2012 Nano Lett. 12 4595Google Scholar

    [78]

    Signorello G, Karg S, Björk M T, Gotsmann B, Riel H 2013 Nano Lett. 13 917Google Scholar

    [79]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [80]

    Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K, Bunch J S 2016 Nano Lett. 16 5836Google Scholar

    [81]

    Boztug C, Sanchez-Perez J R, Cavallo F, Lagally M G, Paiella R 2014 ACS Nano 8 3136Google Scholar

    [82]

    Petykiewicz J, Nam D, Sukhdeo D S, Gupta S, Buckley S, Piggott A Y, Vuckovic J, Saraswat K C 2016 Nano Lett. 16 2168Google Scholar

    [83]

    Pilon F T A, Lyasota A, Niquet Y M, Reboud V, Calvo V, Pauc N, Widiez J, Bonzon C, Hartmann J M, Chelnokov A, Faist J, Sigg H 2019 Nat. Commun. 10 2724Google Scholar

    [84]

    Sukhdeo D S, Nam D, Kang J H, Brongersma M L, Saraswat K C 2014 Photonics Res. 2 8Google Scholar

    [85]

    江佳霖 2019 博士学位论文 (武汉: 华中科技大学)

    Jiang J L 2019 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology)(in Chinese)

    [86]

    Sánchez-Pérez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PANS 108 18893Google Scholar

    [87]

    Süess M J, Geiger R, Minamisawa R A, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J, Sigg H 2013 Nat. Photonics 7 466Google Scholar

    [88]

    Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee K H, Kim Y, Min D, Jung Y, Qiu H D, Wang H, Fitzgerald E A, Tan C S, Nam D 2017 Nat. Commun. 8 1845Google Scholar

    [89]

    Wang Y, Chen Y, Li H, Li X, Chen H, Su H, Lin Y, Xu Y, Song G, Feng X 2016 ACS Nano 10 8199Google Scholar

    [90]

    Jiang H, Khang D Y, Song J, Sun Y, Huang Y, Rogers J A 2007 PANS 104 15607Google Scholar

    [91]

    Song J, Jiang H, Huang Y, Rogers J A 2009 J. Vac. Sci. Technol. A 27 1107Google Scholar

    [92]

    Zhang J, Xu Y, Jiang Y, Bai L, Chen H, Li J, Wang L, Wu W, Song G 2018 Nanoscale 10 12657Google Scholar

  • [1] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响. 物理学报, 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [2] 廖健宏, 曾群, 袁茂辉. GaN基薄膜半导体材料不同非线性效应的竞争关系. 物理学报, 2018, 67(23): 236101. doi: 10.7498/aps.67.20181347
    [3] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [4] 武执政, 余坤, 郭志伟, 李云辉, 江海涛. 类特异材料半导体复合结构中的电子Tamm态. 物理学报, 2015, 64(10): 107302. doi: 10.7498/aps.64.107302
    [5] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [6] 冯雪, 陆炳卫, 吴坚, 林媛, 宋吉舟, 宋国锋, 黄永刚. 可延展柔性无机微纳电子器件原理与研究进展. 物理学报, 2014, 63(1): 014201. doi: 10.7498/aps.63.014201
    [7] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [8] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质. 物理学报, 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [9] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [10] 马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳. (001)面任意方向单轴应变硅材料能带结构. 物理学报, 2011, 60(2): 027101. doi: 10.7498/aps.60.027101
    [11] 刘培生. 多孔材料在压缩载荷作用下的屈曲失效模式分析. 物理学报, 2010, 59(12): 8801-8806. doi: 10.7498/aps.59.8801
    [12] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究. 物理学报, 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
    [13] 姚小虎, 韩 强. 热力耦合作用下双层碳纳米管的扭转屈曲. 物理学报, 2008, 57(8): 5056-5062. doi: 10.7498/aps.57.5056
    [14] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [15] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [16] 王 磊, 张洪武, 王晋宝. 范德华力对双壁碳纳米管轴向压缩屈曲行为的影响. 物理学报, 2007, 56(3): 1506-1513. doi: 10.7498/aps.56.1506
    [17] 周旺民, 王崇愚. 低维半导体材料应变分布. 物理学报, 2004, 53(12): 4308-4313. doi: 10.7498/aps.53.4308
    [18] 王 宇, 王秀喜, 倪向贵, 吴恒安. 单壁碳纳米管轴向压缩变形的研究. 物理学报, 2003, 52(12): 3120-3124. doi: 10.7498/aps.52.3120
    [19] 徐至中. 生长在GexSi1-x(001)衬底上应变GaAs层的价电子能带结构与光学性质. 物理学报, 1996, 45(1): 126-132. doi: 10.7498/aps.45.126
    [20] 徐至中. 生长在GexSi1-x合金衬底(001)面上的应变GaAs层的电子能带结构. 物理学报, 1995, 44(7): 1141-1147. doi: 10.7498/aps.44.1141
计量
  • 文章访问数:  6406
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-02-25
  • 上网日期:  2021-08-18
  • 刊出日期:  2021-08-20

/

返回文章
返回