搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类典型磁力摆的全局动力学行为分析

秦波 尚慧琳 蒋慧敏

引用本文:
Citation:

一类典型磁力摆的全局动力学行为分析

秦波, 尚慧琳, 蒋慧敏

Global dynamic behavior analysis of typical magnetic pendulum

Qin Bo, Shang Hui-Lin, Jiang Hui-Min
PDF
HTML
导出引用
  • 考虑一类等边三角形排布的典型磁力摆, 基于对其全局动力学行为的分析, 研究初值敏感性现象及其机制. 首先, 考虑磁铁位置可以移动, 利用牛顿第二定律建立该磁力摆动力学模型. 进而, 分析不同的磁铁位置所对应的平衡点个数及其稳定性. 在此基础上, 数值模拟初值敏感性现象和不动点吸引域随磁铁位置移动的演变规律. 最后, 通过实验验证该现象. 研究发现, 该类磁力摆普遍存在着多吸引子共存现象, 其初值敏感性可归因于其不动点吸引域的分形, 其中各不动点位置与磁铁中心投影到磁铁所在平面上的位置并不重合, 而是存在微小的偏差; 当摆球位置可投影到3个磁铁对应的等边三角形的形心时, 3个吸引子的吸引域尺寸相当, 呈中心对称状且分形, 因此初值敏感性现象很明显; 移动磁铁位置会直接影响到各吸引域的形态, 即离摆球平衡位置投影点近的磁铁对摆球影响最大, 离该位置最近的吸引子吸引域会明显变大, 而其他吸引子的吸引域则会被侵蚀消减. 本文的研究在磁力摆装置设计方面具有一定的应用价值.
    Based on the analysis of the global dynamic behavior of a typical magnetic pendulum with equilateral triangular arrangement, the initial sensitivity and its mechanism are studied. To begin with, assuming that the position of the magnet can be moved, the dynamical model of a typical magnetic pendulum is established via Newton’s second law. Furthermore, the number of equilibrium points under different magnet positions and their stability are analyzed. Upon this, the initial sensitivity phenomenon and the evolution of fractal basin of attraction of point attractors under different magnet positions are presented. Finally, the initial sensitivity phenomenon is verified experimentally. It is found that the coexistence of multiple attractors generally appears in this type of magnetic pendulum. The initial sensitivity can be attributed to the fractal basin of attraction of fixed point attractors, in which the positions of the fixed point attractors do not overlap with the projected positions of the center of the magnet on the plane where the magnet is located, but there is a slight deviation. When the position of the swing ball can be projected onto the centroids of three equilateral triangles corresponding to the magnets, the sizes of the three attractors’ attraction domains will be similar, whose boundaries are fractal and centrosymmetric, thus, the initial sensitivity is obvious. It also follows that the position of moving magnet affects the nature of basin of attraction directly, i.e., the magnet which is closest to the projection point of the balance position of the swing ball has a great influence on the swing ball: the domain of attraction of the attractor whose is the closest to the position will increase significantly, while the attractor domains of the other attractors will be eroded obviously. This paper has potential applications in designing the magnetic pendulum systems.
      通信作者: 尚慧琳, suliner60@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 11472176)资助的课题
      Corresponding author: Shang Hui-Lin, suliner60@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472176)
    [1]

    Siahmakoun A 1997 Am. J. Phys. 65 393Google Scholar

    [2]

    Stefański K, Buszko K, Piecyk K 2010 Chaos 20 033117Google Scholar

    [3]

    Sathiyadevi K, Karthiga S, Chandrasekar V K 2019 Commun. Nonlinear Sci. Numer. Simul. 72 586Google Scholar

    [4]

    Souza A P, Savi M A, Iunes F H 2006 J. Sound Vib. 294 585Google Scholar

    [5]

    Woltering, Markus 2000 Phys. Rev. Lett. 84 630Google Scholar

    [6]

    Marino F, Marin F 2013 Phys. Rev. E 87 052906Google Scholar

    [7]

    杨科利 2016 物理学报 65 100501Google Scholar

    Yang K L 2016 Acta Phys. Sin. 65 100501Google Scholar

    [8]

    Zhang S, Zheng J H, Wang X P, Zeng Z G, He S B 2020 Nonlinear Dyn. 102 2821Google Scholar

    [9]

    Lai Q, Wan Z Q, Paul D K K, Hilaire F 2020 Commun. Nonlinear Sci. Numer. Simul. 89 105341Google Scholar

    [10]

    Lai Q 2021 Int. J. Bifurcat. Chaos 31 2150013Google Scholar

    [11]

    Sanz M G 2001 Int. J. Electr. Eng. Educ. 38 26Google Scholar

    [12]

    Kraftmakher Y 2007 Eur. J. Phys. 28 1007Google Scholar

    [13]

    Wijata A, Polczyński K, Awrejcewicz J 2020 Mech. Syst. Sig. Process. 150 107229Google Scholar

    [14]

    Motter A E, Gruiz M, Károlyi G, Tél T 2013 Phys. Rev. Lett. 111 194101Google Scholar

    [15]

    谭宁, 徐健学, 康艳梅, 陈永红 2003 物理学报 52 2989Google Scholar

    Tan N, Xu J X, Kang Y M, Chen Y H 2003 Acta Phys. Sin. 52 2989Google Scholar

    [16]

    Sinacore J 2010 Phys. Teach. 48 448Google Scholar

    [17]

    冯进铃, 徐伟 2011 物理学报 60 080502Google Scholar

    Feng J L, Xu W 2011 Acta Phys. Sin. 60 080502Google Scholar

    [18]

    Zhang S, Zeng Y C, Li Z J 2018 Chin. J. Phys. 56 793Google Scholar

    [19]

    Khomeriki G 2016 Phys. Lett. A 380 2382Google Scholar

    [20]

    D’Alessio S 2020 Phys. Educ. 55 063002Google Scholar

    [21]

    Lorenz E N 1963 New York Acad. Sci. 25 409Google Scholar

    [22]

    Mann B P 2009 J. Sound Vib. 323 864Google Scholar

    [23]

    James M, Christian C F, Holly A J 2020 Math. Today 70 354020

    [24]

    Peitgen H O, Jürgens H, Saupe D 2004 Chaos and Fractals: New Frontiers of Science (Dordrecht: Springer) pp708–711

    [25]

    胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第125页

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) p125 (in Chinese)

    [26]

    赵建立, 王文省 2016 高等代数 (北京: 高等教育出版社) 第279−282页

    Zhao J L, Wang W S 2016 Higher Algebra (Beijing: Higher Education Press) pp279−282 (in Chinese)

  • 图 1  磁力摆 (a) 实物; (b) 改进模型; (c) 简化计算模型

    Fig. 1.  Magnetic pendulum: (a) Real object; (b) improved model; (c) simplified calculation model.

    图 2  摆球与单个磁铁位置示意图

    Fig. 2.  Position diagram of pendulum ball and single magnet.

    图 3  摆球不同出发位置时运动轨迹和时间历程 (a) 磁铁位置未移动时; (b) 磁铁位置移动时

    Fig. 3.  Movement trajectory and time history diagram of the swing ball at different starting positions: (a) When the magnet position is not moved; (b) when the magnet position moves.

    图 4  磁铁位置未移动时分形吸引域

    Fig. 4.  Diagram of fractal domain of attraction when magnet position is not moved.

    图 5  向左方向平移时分形吸引域随磁铁位置演变 (a) $ {d_{{L_1}}} = - \sqrt 3 /3 $; (b) $ {d_{{L_2}}} = - 2\sqrt 3 /3 $; (c) $ {d_{{L_3}}} = - \sqrt 3 $

    Fig. 5.  Evolution of fractal basin of attraction of the attractors under different translation distances of magnet position to the left: (a) $ {d_{{L_1}}} = - \sqrt 3 /3 $; (b) $ {d_{{L_2}}} = - 2\sqrt 3 /3 $; (c) $ {d_{{L_3}}} = - \sqrt 3 $.

    图 6  向右方向平移时分形吸引域随磁铁位置演变 (a) $ {d_{{R_1}}} = \sqrt 3 /3 $; (b) $ {d_{{R_2}}} = 2\sqrt 3 /3 $; (c) $ {d_{{R_3}}} = \sqrt 3 $

    Fig. 6.  Evolution of fractal basin of attraction of the attractors under different translation distances of magnet position to the right: (a) $ {d_{{R_1}}} = \sqrt 3 /3 $; (b) $ {d_{{R_2}}} = 2\sqrt 3 /3 $; (c) $ {d_{{R_3}}} = \sqrt 3 $.

    图 7  磁力摆实验装置 (a) 实验整体装置; (b) 电路连接

    Fig. 7.  An experimental apparatus for a magnetic pendulum: (a) Overall experimental device; (b) circuit connection.

    图 8  摆球不同出发位置时光轨运动轨迹 (a) 第1次释放摆球光轨运动轨迹; (b) 第2次释放摆球光轨运动轨迹; (c) 第3次释放摆球光轨运动轨迹

    Fig. 8.  Trajectory photo of light track in different starting positions of pendulum ball: (a) The trajectory photo of the first release pendulum; (b) the trajectory photo of the second release pendulum; (c) the trajectory photo of the third release pendulum.

    表 1  磁铁移动位置

    Table 1.  Magnet moving position.

    序号组别移动距离磁铁中心投影到$ xy $平面的位置
    0$ {d_o} = 0 $$ (x_o^A, \;y_o^A) = (2\sqrt 3 /3, \;0) $, $ (x_o^B, \;y_o^B) = ( - \sqrt 3 /3, \;1) $, $ (x_o^C, \;y_o^C) = ( - \sqrt 3 /3, \; - 1) $
    1$ {d_{{L_1}}} = - \sqrt 3 /3 $$ (x_{{L_1}}^A, \;y_o^A) = (\sqrt 3 /3, \;0) $, $ (x_{{L_1}}^B, \;y_o^B) = ( - 2\sqrt 3 /3, \;1) $, $ (x_{{L_1}}^C, \;y_o^C) = ( - 2\sqrt 3 /3, \; - 1) $
    2$ {d_{{L_2}}} = - 2\sqrt 3 /3 $$ (x_{{L_2}}^A, \;y_o^A) = (0, \;0) $, $ (x_{{L_2}}^B, \;y_o^B) = ( - \sqrt 3, \;1) $, $ (x_{{L_2}}^C, \;y_o^C) = ( - \sqrt 3, \; - 1) $
    3$ {d_{{L_3}}} = - \sqrt 3 $$ (x_{{L_3}}^A, \;y_o^A) = ( - \sqrt 3 /3, \;0) $, $ (x_{{L_3}}^B, \;y_o^B) = ( - 4\sqrt 3 /3, \;1) $, $ (x_{{L_3}}^C, \;y_o^C) = ( - 4\sqrt 3 /3, \; - 1) $
    4$ {d_{{R_1}}} = \sqrt 3 /3 $$ (x_{{R_1}}^A, \;y_o^A) = (\sqrt 3, \;0) $, $ (x_{{R_1}}^B, \;y_o^B) = (0, \;1) $, $ (x_{{R_1}}^C, \;y_o^C) = (0, \; - 1) $
    5$ {d_{{R_2}}} = 2\sqrt 3 /3 $$ (x_{{R_2}}^A, \;y_o^A) = (4\sqrt 3 /3, \;0) $, $ (x_{{R_2}}^A, \;y_o^B) = (\sqrt 3 /3, \;1) $, $ (x_{{R_2}}^C, \;y_o^C) = (\sqrt 3 /3, \; - 1) $
    6$ {d_{{R_3}}} = \sqrt 3 $$ (x_{{R_3}}^A, \;y_o^A) = (5\sqrt 3 /3, \;0) $, $ (x_{{R_3}}^B, \;y_o^B) = (2\sqrt 3 /3, \;1) $, $ (x_{{R_3}}^C, \;y_o^C) = (2\sqrt 3 /3, \; - 1) $
    下载: 导出CSV

    表 2  7组不同磁铁位置的平衡点

    Table 2.  Seven groups of equilibrium points with different magnet positions.

    组别序号移动距离平衡点位置
    0$ {d_o} = 0 $$ (\tilde x_o^1, \;\tilde y_o^1) = (1.139, \;0) $, $ (\tilde x_o^2, \;\tilde y_o^2) = ( - 0.570, \;0.986) $, $ (\tilde x_o^3, \;\tilde y_o^3) = ( - 0.570, \; - 0.986) $,
    $ (\tilde x_o^4, \;\tilde y_o^4) = (0.054, \;0.094) $, $ (\tilde x_o^5, \;\tilde y_o^5) = (0.054, \; - 0.094) $, $ (\tilde x_o^6, \;\tilde y_o^6) = ( - 0.108, \;0) $
    1$ {d_{{L_1}}} = - \sqrt 3 /3 $$ (\tilde x_{{L_1}}^1, \;\tilde y_{{L_1}}^1) = (0.566, \;0) $, $ (\tilde x_{{L_1}}^2, \;\tilde y_{{L_1}}^2) = ( - 1.142, \;0.986) $, $ (\tilde x_{{L_1}}^3, \;\tilde y_{{L_1}}^3) = ( - 1.142, \; - 0.986) $,
    $ (\tilde x_{{L_1}}^4, \;\tilde y_{{L_1}}^4) = ( - 0.521, \;0.343) $, $ (\tilde x_{{L_1}}^5, \;\tilde y_{{L_1}}^5) = ( - 0.521, \; - 0.343) $
    2$ {d_{{L_2}}} = - 2\sqrt 3 /3 $$ (\tilde x_{{L_2}}^1, \;\tilde y_{{L_2}}^1) = ( - 0.007, \;0) $, $ (\tilde x_{{L_2}}^2, \;\tilde y_{{L_2}}^2) = ( - 1.715, \;0.986) $, $ (\tilde x_{{L_2}}^3, \;\tilde y_{{L_2}}^3) = ( - 1.715, \; - 0.986) $,
    $ (\tilde x_{{L_2}}^4, \;\tilde y_{{L_2}}^4) = ( - 1.105, \;0.475) $, $ (\tilde x_{{L_2}}^5, \;\tilde y_{{L_2}}^5) = ( - 1.105, \; - 0.475) $
    3$ {d_{{L_3}}} = - \sqrt 3 $$ (\tilde x_{{L_3}}^1, \;\tilde y_{{L_3}}^1) = ( - 0.579, \;0) $, $ (\tilde x_{{L_3}}^2, \;\tilde y_{{L_3}}^2) = ( - 2.288, \;0.986) $, $ (\tilde x_{{L_3}}^3, \;\tilde y_{{L_3}}^3) = ( - 2.288, \; - 0.986) $,
    $ (\tilde x_{{L_3}}^4, \;\tilde y_{{L_3}}^4) = ( - 1.697, \;0.573) $, $ (\tilde x_{{L_3}}^5, \;\tilde y_{{L_3}}^5) = ( - 1.697, \; - 0.573) $
    4$ {d_{{R_1}}} = \sqrt 3 /3 $$ (\tilde x_{{R_1}}^1, \;\tilde y_{{R_1}}^1) = (1.712, \;0) $, $ (\tilde x_{{R_1}}^2, \;\tilde y_{{R_1}}^2) = (0.003, \;0.986) $, $ (\tilde x_{{R_1}}^3, \;\tilde y_{{R_1}}^3) = (0.003, \; - 0.986) $,
    $ (\tilde x_{{R_1}}^4, \;\tilde y_{{R_1}}^4) = (0.847, \;0) $, $ (\tilde x_{{R_1}}^5, \;\tilde y_{{R_1}}^5) = (0.177, \;0) $
    5$ {d_{{R_2}}} = 2\sqrt 3 /3 $$ (\tilde x_{{R_2}}^1, \;\tilde y_{{R_2}}^1) = (2.284, \;0) $, $ (\tilde x_{{R_2}}^2, \;\tilde y_{{R_2}}^2) = (0.576, \;0.986) $, $ (\tilde x_{{R_2}}^3, \;\tilde y_{{R_2}}^3) = (0.576, \; - 0.986) $,
    $ (\tilde x_{{R_2}}^4, \;\tilde y_{{R_2}}^4) = (1.541, \;0) $, $ (\tilde x_{{R_2}}^5, \;\tilde y_{{R_2}}^5) = (0.595, \;0) $
    6$ {d_{{R_3}}} = \sqrt 3 $$ (\tilde x_{{R_3}}^1, \;\tilde y_{{R_3}}^1) = (2.857, \;0) $, $ (\tilde x_{{R_3}}^2, \;\tilde y_{{R_3}}^2) = (1.149, \;0.986) $, $ (\tilde x_{{R_3}}^3, \;\tilde y_{{R_3}}^3) = (1.149, \; - 0.986) $,
    $ (\tilde x_{{R_3}}^4, \;\tilde y_{{R_3}}^4) = (2.200, \;0) $, $ (\tilde x_{{R_3}}^5, \;\tilde y_{{R_3}}^5) = (1.025, \;0) $
    下载: 导出CSV

    表 3  磁力摆系统移动磁铁位置时稳定的平衡点判定结果

    Table 3.  Results of judging the stable equilibrium point when the magnetic pendulum moves the position of the magnet.

    序号组别平衡点位置平衡点特征值特征子空间维数稳定性
    0 $ (\tilde x_o^1, \;\tilde y_o^1) $ $\lambda _{1, \;2}^1 = \pm 2.61{\rm{i} }$, $ \lambda _{3, \;4}^1 = 0 $ 4 稳定
    $ (\tilde x_o^2, \;\tilde y_o^2) $$ \lambda _{1, \;2}^2 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 1.07{\rm{i}} $4稳定
    $ (\tilde x_o^3, \;\tilde y_o^3) $$ \lambda _{1, \;2}^3 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 1.07{\rm{i}} $4稳定
    1$ (\tilde x_{{L_1}}^1, \;\tilde y_{{L_1}}^1) $$ \lambda _{1, \;2}^1 = \pm 6.28{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{L_1}}^2, \;\tilde y_{{L_1}}^2) $$ \lambda _{1, \;2}^2 = \pm 1.53{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 0.87{\rm{i}} $4稳定
    $ (\tilde x_{{L_1}}^3, \;\tilde y_{{L_1}}^3) $$ \lambda _{1, \;2}^3 = \pm 1.53{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 0.87{\rm{i}} $4稳定
    2$ (\tilde x_{{L_2}}^1, \;\tilde y_{{L_2}}^1) $$ \lambda _{1, \;2}^1 = \pm 0.52{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{L_2}}^2, \;\tilde y_{{L_2}}^2) $$ \lambda _{1, \;2}^2 = \pm 1.09{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 0.49{\rm{i}} $4稳定
    $ (\tilde x_{{L_2}}^3, \;\tilde y_{{L_2}}^3) $$\lambda _{1, \;2}^3 = \pm 1.09{\rm{i} }$, $\lambda _{3, \;4}^3 = \pm 0.49{\rm{i} }$4稳定
    3$ (\tilde x_{{L_3}}^1, \tilde y_{{L_3}}^1) $$\lambda _{1, \;2}^1 = \pm 6.39{\rm{i} }$, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{L_3}}^2, \tilde y_{{L_3}}^2) $$\lambda _{1, \;2}^2 = \pm 0.80{\rm{i} }$, $\lambda _{3, \;4}^2 = \pm 0.28{\rm{i} }$4稳定
    $ (\tilde x_{{L_3}}^3, \tilde y_{{L_3}}^3) $$\lambda _{1, \;2}^3 = \pm 0.80{\rm{i} }$, $\lambda _{3, \;4}^3 = \pm 0.28{\rm{i} }$4稳定
    4$ (\tilde x_{{R_1}}^1, \tilde y_{{R_1}}^1) $$ \lambda _{1, \;2}^1 = \pm 1.47{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{R_1}}^2, \tilde y_{{R_1}}^2) $$ \lambda _{1, \;2}^2 = \pm 3.18{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 0.01{\rm{i}} $4稳定
    $ (\tilde x_{{R_1}}^3, \tilde y_{{R_1}}^3) $$\lambda _{1, \;2}^3 = \pm 3.18{\rm{i} }$, $ \lambda _{3, \;4}^3 = \pm 0.01{\rm{i}} $4稳定
    5$ (\tilde x_{{R_2}}^1, \;\tilde y_{{R_2}}^1) $$ \lambda _{1, \;2}^1 = \pm 0.96{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{R_2}}^2, \;\tilde y_{{R_2}}^2) $$ \lambda _{1, \;2}^2 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^2 = \pm 1.08{\rm{i}} $4稳定
    $ (\tilde x_{{R_2}}^3, \;\tilde y_{{R_2}}^3) $$ \lambda _{1, \;2}^3 = \pm 2.38{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 1.08{\rm{i}} $4稳定
    6$ (\tilde x_{{R_3}}^1, \;\tilde y_{{R_3}}^1) $$ \lambda _{1, \;2}^1 = \pm 0.69{\rm{i}} $, $ \lambda _{3, \;4}^1 = 0 $4稳定
    $ (\tilde x_{{R_3}}^2, \;\tilde y_{{R_3}}^2) $$ \lambda _{1, \;2}^2 = \pm 1.54{\rm{i}} $, $\lambda _{3, \;4}^2 = \pm 0.87{\rm{i} }$4稳定
    $ (\tilde x_{{R_3}}^3, \;\tilde y_{{R_3}}^3) $$ \lambda _{1, \;2}^3 = \pm 1.54{\rm{i}} $, $ \lambda _{3, \;4}^3 = \pm 0.87{\rm{i}} $4稳定
    下载: 导出CSV
  • [1]

    Siahmakoun A 1997 Am. J. Phys. 65 393Google Scholar

    [2]

    Stefański K, Buszko K, Piecyk K 2010 Chaos 20 033117Google Scholar

    [3]

    Sathiyadevi K, Karthiga S, Chandrasekar V K 2019 Commun. Nonlinear Sci. Numer. Simul. 72 586Google Scholar

    [4]

    Souza A P, Savi M A, Iunes F H 2006 J. Sound Vib. 294 585Google Scholar

    [5]

    Woltering, Markus 2000 Phys. Rev. Lett. 84 630Google Scholar

    [6]

    Marino F, Marin F 2013 Phys. Rev. E 87 052906Google Scholar

    [7]

    杨科利 2016 物理学报 65 100501Google Scholar

    Yang K L 2016 Acta Phys. Sin. 65 100501Google Scholar

    [8]

    Zhang S, Zheng J H, Wang X P, Zeng Z G, He S B 2020 Nonlinear Dyn. 102 2821Google Scholar

    [9]

    Lai Q, Wan Z Q, Paul D K K, Hilaire F 2020 Commun. Nonlinear Sci. Numer. Simul. 89 105341Google Scholar

    [10]

    Lai Q 2021 Int. J. Bifurcat. Chaos 31 2150013Google Scholar

    [11]

    Sanz M G 2001 Int. J. Electr. Eng. Educ. 38 26Google Scholar

    [12]

    Kraftmakher Y 2007 Eur. J. Phys. 28 1007Google Scholar

    [13]

    Wijata A, Polczyński K, Awrejcewicz J 2020 Mech. Syst. Sig. Process. 150 107229Google Scholar

    [14]

    Motter A E, Gruiz M, Károlyi G, Tél T 2013 Phys. Rev. Lett. 111 194101Google Scholar

    [15]

    谭宁, 徐健学, 康艳梅, 陈永红 2003 物理学报 52 2989Google Scholar

    Tan N, Xu J X, Kang Y M, Chen Y H 2003 Acta Phys. Sin. 52 2989Google Scholar

    [16]

    Sinacore J 2010 Phys. Teach. 48 448Google Scholar

    [17]

    冯进铃, 徐伟 2011 物理学报 60 080502Google Scholar

    Feng J L, Xu W 2011 Acta Phys. Sin. 60 080502Google Scholar

    [18]

    Zhang S, Zeng Y C, Li Z J 2018 Chin. J. Phys. 56 793Google Scholar

    [19]

    Khomeriki G 2016 Phys. Lett. A 380 2382Google Scholar

    [20]

    D’Alessio S 2020 Phys. Educ. 55 063002Google Scholar

    [21]

    Lorenz E N 1963 New York Acad. Sci. 25 409Google Scholar

    [22]

    Mann B P 2009 J. Sound Vib. 323 864Google Scholar

    [23]

    James M, Christian C F, Holly A J 2020 Math. Today 70 354020

    [24]

    Peitgen H O, Jürgens H, Saupe D 2004 Chaos and Fractals: New Frontiers of Science (Dordrecht: Springer) pp708–711

    [25]

    胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第125页

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) p125 (in Chinese)

    [26]

    赵建立, 王文省 2016 高等代数 (北京: 高等教育出版社) 第279−282页

    Zhao J L, Wang W S 2016 Higher Algebra (Beijing: Higher Education Press) pp279−282 (in Chinese)

  • [1] 贾美美, 蒋浩刚, 李文静. 新Chua多涡卷混沌吸引子的产生及应用. 物理学报, 2019, 68(13): 130503. doi: 10.7498/aps.68.20182183
    [2] 邢雅清, 陈小可, 张正娣, 毕勤胜. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, 2016, 65(9): 090501. doi: 10.7498/aps.65.090501
    [3] 杨科利. 耦合不连续系统同步转换过程中的多吸引子共存. 物理学报, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [4] 彭再平, 王春华, 林愿, 骆小文. 一种新型的四维多翼超混沌吸引子及其在图像加密中的研究. 物理学报, 2014, 63(24): 240506. doi: 10.7498/aps.63.240506
    [5] 艾星星, 孙克辉, 贺少波. 不同类型混沌吸引子的复合. 物理学报, 2014, 63(4): 040503. doi: 10.7498/aps.63.040503
    [6] 艾星星, 孙克辉, 贺少波, 王会海. 简化Lorenz多涡卷混沌吸引子的设计与应用. 物理学报, 2014, 63(12): 120511. doi: 10.7498/aps.63.120511
    [7] 黄沄. 一类多翼蝴蝶混沌吸引子及其电路实现. 物理学报, 2014, 63(8): 080505. doi: 10.7498/aps.63.080505
    [8] 林愿, 王春华, 徐浩. 基于电流传输器的网格多涡卷混沌吸引子在混合图像加密中的研究. 物理学报, 2012, 61(24): 240503. doi: 10.7498/aps.61.240503
    [9] 陈仕必, 曾以成, 徐茂林, 陈家胜. 用多项式和阶跃函数构造网格多涡卷混沌吸引子及其电路实现. 物理学报, 2011, 60(2): 020507. doi: 10.7498/aps.60.020507
    [10] 包伯成, 刘中, 许建平, 朱雷. 基于Colpitts振荡器模型生成的多涡卷超混沌吸引子. 物理学报, 2010, 59(3): 1540-1548. doi: 10.7498/aps.59.1540
    [11] 张朝霞, 禹思敏. 用时滞和阶跃序列组合生成网格多涡卷蔡氏混沌吸引子. 物理学报, 2009, 58(1): 120-130. doi: 10.7498/aps.58.120
    [12] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [13] 罗小华, 李华青, 代祥光. 一类多涡卷混沌吸引子及电路设计. 物理学报, 2008, 57(12): 7511-7516. doi: 10.7498/aps.57.7511
    [14] 王发强, 刘崇新. 一类多折叠环面多涡卷混沌吸引子的仿真研究. 物理学报, 2007, 56(4): 1983-1987. doi: 10.7498/aps.56.1983
    [15] 王发强, 刘崇新, 逯俊杰. 四维系统中多涡卷混沌吸引子的仿真研究. 物理学报, 2006, 55(7): 3289-3294. doi: 10.7498/aps.55.3289
    [16] 禹思敏. 用三角波序列产生三维多涡卷混沌吸引子的电路实验. 物理学报, 2005, 54(4): 1500-1509. doi: 10.7498/aps.54.1500
    [17] 禹思敏, 林清华, 丘水生. 一类多折叠环面混沌吸引子. 物理学报, 2004, 53(7): 2084-2088. doi: 10.7498/aps.53.2084
    [18] 陈永红, 周桐, 何岱海, 徐健学, 苏文田. 研究多中心奇异吸引子混沌相位的新方法. 物理学报, 2002, 51(4): 731-735. doi: 10.7498/aps.51.731
    [19] 王安良, 杨春信. 评价奇怪吸引子分形特征的Grassberger-Procaccia算法. 物理学报, 2002, 51(12): 2719-2729. doi: 10.7498/aps.51.2719
    [20] 谭 宁, 陈永红, 徐健学. 耦合帐篷映射混沌同步系统的筛形吸引域. 物理学报, 2000, 49(7): 1215-1220. doi: 10.7498/aps.49.1215
计量
  • 文章访问数:  3820
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-04-21
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回