搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究

侯滨朋 淦作亮 雷雪玲 钟淑英 徐波 欧阳楚英

引用本文:
Citation:

第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究

侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英

First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries

Hou Bin-Peng, Gan Zuo-Liang, Lei Xue-Ling, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying
PDF
HTML
导出引用
  • 采用第一性原理, 研究了不同浓度的氮掺杂石墨烯还原氧分子的机理. 结果表明, 掺杂氮原子以后, 氧分子的吸附能增大, 获得的电荷增多, O—O键长变长, 说明氮掺杂石墨烯增强了对氧分子的还原能力. 进一步分析发现, 氧分子吸附之后, 氮原子和氧分子均从碳原子上获得电荷, 氮原子同时也向氧分子转移电荷, 从而使氧分子与基底的相互作用增强. 另外, 通过对比不同浓度的氮原子掺杂, 发现3.13 at%的氮原子掺杂比例对氧分子的还原性能最好.
    Lithium-oxygen battery possesses an extremely high theoretical energy density ($ \approx$ 3500 W·h·kg–1), and is an ideal next-generation energy storage system. The ideal operation of lithium-oxygen batteries is based on the electrochemical formation (discharge) and decomposition (charge) of lithium peroxide (Li2O2). At the beginning of the discharge, oxygen is reduced on the electrode, forming an oxygen radical (${\rm O}^{-}_{2} $). The $ {\rm O}^{-}_{2}$ successively combines with an Li ion, forming the metastable LiO2. The LiO2 may subsequently undergo two different reaction pathways: a chemical disproportionation and a continuous electrochemical reduction, thereby resulting in the formation of Li2O2. Therefore, the oxygen reduction reaction (ORR) is an important step in the discharge process. Studies have shown that graphene is considered as the most promising cathode material for non-aqueous lithium-oxygen batteries. Moreover, it is found that nitrogen-doped graphene has higher electrocatalytic activity than intrinsic graphene for the ORR. However, up to now, the mechanism of improving the ORR for nitrogen-doped graphene is still unclear, and the effects of different N-doping concentrations on the ORR have not been reported. In this work, on the basis of the first-principles calculations, the reduction mechanism of O2 molecule by nitrogen-doped graphene with different N concentrations is studied. Results show that after doping N atoms, the adsorption energy of O2 molecules increases, the O—O bond length is elongated, and the transferred charge increases, which indicates that nitrogen-doped graphene enhances the reduction ability of O2 molecule. Bader charge analysis shows that both N atom and O2 molecule obtain charges from C atom, and N atom also provides charges for O2 molecule, which is consistent with the electronegativity of carbon, nitrogen and oxygen. This charge transfer results in the stronger interaction between the O2 molecule and the substrate, and can reveal the reason why nitrogen-doped graphene can improve the ORR. In addition, it is found that the reduction ability of O2 molecule is best when the N-doping ratio is 3.13 at%. It is hoped that this work will play a guiding role in the synthesizing the nitrogen-doped graphene materials, and will be helpful in optimizing the cathode materials of lithium-oxygen batteries.
      通信作者: 雷雪玲, xueling@mail.ustc.edu.cn ; 钟淑英, syzhong@jxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11764019, 11564016, 11664012)资助的课题.
      Corresponding author: Lei Xue-Ling, xueling@mail.ustc.edu.cn ; Zhong Shu-Ying, syzhong@jxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764019, 11564016, 11664012).
    128801-Suppl.pdf
    128801补充材料图S1—图S7
    [1]

    Yang Z, Zhang J, Kintner-Meyer M C W, Lu X, Choi D, Lemmon J P, Liu J 2011 Chem. Rev. 111 3577Google Scholar

    [2]

    Kwak W J, Kim H, Jung H G, Aurbach D, Sun Y K 2018 J. Electrochem. Soc. 165 A2274Google Scholar

    [3]

    Zhao N, Li C, Guo X 2014 Energy Technol. 2 317Google Scholar

    [4]

    Wen Z, Shen C, Lu Y 2015 ChemPlusChem 80 270Google Scholar

    [5]

    Lim H D, Lee B, Bae Y, Park H, Ko Y, Kim H, Kim J, Kang K 2017 Chem. Soc. Rev. 46 2873Google Scholar

    [6]

    Dai W, Cui X, Zhou Y, Zhao Y, Wang L, Peng L, Chen W 2019 Small Methods 3 1800358Google Scholar

    [7]

    Lu J, Li L, Park J B, Sun Y K, Wu F, Amine K 2014 Chem. Rev. 114 5611Google Scholar

    [8]

    Aurbach D, McCloskey B D, Nazar L F, Bruce P G 2016 Nat. Energy 1 1

    [9]

    Abraham K M, Jiang Z 1996 Electrochem. Sci. Technol. 143 1Google Scholar

    [10]

    Ogasawara T, Débart A l, Holzapfel M, Novák P, Bruce P G 2006 J. Am. Chem. Soc. 128 1390Google Scholar

    [11]

    Wang Y, Lai N C, Lu Y R, Zhou Y, Dong C L, Lu Y C 2018 Joule 2 2364Google Scholar

    [12]

    Lu Y, Tong S, Qiu F, Jiang J, Feng N, Zhang X, He P, Zhou H 2016 J. Power Sources 329 525Google Scholar

    [13]

    Liu C J, Brant W R, Younesi R, Dong Y Y, Edstrom K, Gustafsson T, Zhu J F 2017 ChemSusChem 10 1592Google Scholar

    [14]

    Cui Y M, Wen Z Y, Liang X, Lu Y, Jin J, Wu M F, Wu X W 2012 Energy Environ. Sci. 5 7893Google Scholar

    [15]

    Wang J J, Li Y L, Sun X L 2013 Nano Energy 2 443Google Scholar

    [16]

    Ma Z, Yuan X, Li L, Ma Z F, Wilkinson D P, Zhang L, Zhang J 2015 Energy Environ. Sci. 8 2144Google Scholar

    [17]

    Tang Y, Qiao H, Wang H, Tao P 2013 J. Mater. Chem. A 1 12512Google Scholar

    [18]

    Xiao J, Mei D, Li X, Xu W, Wang D, Graff G L, Bennett W D, Nie Z, Saraf L V, Aksay I A, Liu J, Zhang J G 2011 Nano Lett. 11 5071Google Scholar

    [19]

    Jin L, Xu L, Morein C, Chen C, Lai M, Dharmarathna S, Dobley A, Suib S L 2010 Adv. Funct. Mater. 20 3373Google Scholar

    [20]

    Gao R, Shang Z, Zheng L, Wang J, Sun L, Hu Z, Liu X 2019 Inorg. Chem 58 4989Google Scholar

    [21]

    Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K 2018 Adv. Mater. 30 1704162Google Scholar

    [22]

    Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S 2010 J. Power Sources 195 4628Google Scholar

    [23]

    Soin N, Roy S S, Lim T H, McLaughlin J A D 2011 Mater. Chem. Phys. 129 1051Google Scholar

    [24]

    Li Y, Wang J, Li X, Geng D, Li R, Sun X 2011 Chem. Commun. 47 9438Google Scholar

    [25]

    Sun B, Wang B, Su D, Xiao L, Ahn H, Wang G 2012 Carbon 50 727Google Scholar

    [26]

    Yang Y, Shi M, Zhou Q F, Li Y S, Fu Z W 2012 Electrochem. Commun. 20 11Google Scholar

    [27]

    Kim H, Lim H D, Kim J, Kang K 2014 J. Mater. Chem. A 2 33Google Scholar

    [28]

    Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J 2013 ACS Nano 7 3532Google Scholar

    [29]

    Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491Google Scholar

    [30]

    Li Y, Wang J, Li X, Liu J, Geng D, Yang J, Li R, Sun X 2011 Electrochem. Commun. 13 668Google Scholar

    [31]

    Li Y, Wang J, Li X, Geng D, Banis M N, Li R, Sun X 2012 Electrochem. Commun. 18 12Google Scholar

    [32]

    Higgins D, Chen Z, Lee D U, Chen Z 2013 J. Mater. Chem. A 1 2639Google Scholar

    [33]

    Zhao C, Yu C, Liu S, Yang J, Fan X, Huang H, Qiu J 2015 Adv. Funct. Mater. 25 6913Google Scholar

    [34]

    Yan H J, Xu B, Shi S Q, Ouyang C Y 2012 J. Appl. Phys. 112 104316Google Scholar

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [38]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [41]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [42]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [43]

    Pramanik A, Kang H S 2011 J. Phys. Chem. C 115 10971Google Scholar

    [44]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [45]

    Avouris P, Chen Z, Perebeinos V 2007 Nature Nanotech. 2 605Google Scholar

    [46]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.: Condens. Matter 21 084204Google Scholar

  • 图 1  本征石墨烯的几何结构与电子性质 (a)结构图; (b)能带和态密度图; (c)布里渊区高对称点的示意图

    Fig. 1.  Optimized structure and electronic properties of graphene: (a) Optimized structure; (b) the energy band and density of states (DOS); (c) the irreducible Brillouin zone. The irreducible k-point path ΓMKΓ corresponds to the graphene.

    图 2  NxG (x = 1, 2, 3)的最稳定构型(碳原子和氮原子分别用灰色和蓝色小球表示) (a) N1G (x = 1); (b) N2G-1 (x = 2); (c) N2G-2 (x = 2, 亚稳态构型); (d) N3G (x = 3)

    Fig. 2.  Optimal structures of NxG (x = 1, 2, 3): (a) N1G (x = 1); (b) N2G-1 (x = 2); (c) N2G-2 (x = 2, metastable state); (d) N3G (x = 3). The C atom and N atom are represented by grey and blue sphere, respectively.

    图 3  NxG (x = 0, 1, 2, 3) 吸附氧分子的最稳定构型(碳原子、氮原子和氧原子分别用灰色、蓝色和红色小球表示) (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2

    Fig. 3.  Optimal structures of NxG (x = 0, 1, 2, 3): (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2. The C atom, N atom, and O atom are represented by grey, blue, and red spheres, respectively.

    图 4  G-O2和N1G-O2中氧分子获得的电荷与C/N-O距离之间的关系

    Fig. 4.  Charges of O2 molecule vs. the C-O distance in the G-O2 system (red line) and the N-O distance in the N1G-O2 system (blue line).

    图 5  NxG-O2 (x = 0, 1, 2, 3) 差分电荷密度图(黄色代表电荷聚集, 蓝色代表电荷失去; 电荷等势面是6 × 10–4 e/Å3) (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2

    Fig. 5.  Charge density difference of NxG-O2 (x = 0, 1, 2, 3): (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2. The gain of electrons is indicated in yellow and the loss of electrons is indicated in blue. The isosurface value is 6 × 10–4 e/Å3.

    图 6  NxG-O2能带结构图 (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2

    Fig. 6.  Band structures of NxG-O2: (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2.

    图 7  分态密度图 (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2

    Fig. 7.  Projected density of states (PDOS): (a) G-O2; (b) N1G-O2; (c) N2G-O2; (d) N3G-O2.

    图 8  NxG-O2(x = 0, 1, 2, 3)不同异构体的氧分子获得电荷 (a)及键长(b)统计

    Fig. 8.  Charges (a) and O—O distances (b) of isomers of NxG-O2 (x = 0, 1, 2, 3).

    图 9  GN 吸附氧分子的最稳定构型(碳原子、氮原子和氧原子分别用灰色、蓝色和红色小球表示) (a) 3 × 3 × 1 GN-O2; (b) 4 × 4 × 1 GN-O2; (c) 5 × 5 × 1 GN-O2

    Fig. 9.  Optimal structures of GN-O2: (a) 3 × 3 × 1 GN-O2; (b) 4 × 4 × 1 GN-O2; (c) 5 × 5 × 1 GN-O2. The C atom, N atom, and O atom are represented by grey, blue, and red spheres, respectively.

    表 1  NxG (x = 0, 1, 2, 3) 吸附氧分子的相关性质

    Table 1.  Adsorption properties of O2 molecule on the NxG (x = 0, 1, 2, 3).

    NxG-O2/at% Ead/eV dO—O $Q_{{\rm O}_2} $/e QN/e N含量
    O2 1.233
    G-O2 0.13 1.242 –0.04
    N1G-O2 0.31 1.261 –0.22 –1.24 3.13
    N2G-O2 0.33 1.259 –0.25 –2.39 6.25
    N3G-O2 0.28 1.258 –0.21 –3.72 9.38
    下载: 导出CSV

    表 2  不同N掺杂石墨烯基底吸附氧分子的相关性质

    Table 2.  Adsorption properties of O2 molecule on the 3 × 3 × 1 GN-O2, 4 × 4 × 1 GN-O2, and 5 × 5 × 1 GN-O2.

    NG-O2 Ead/eV dO—O $ d_{{\rm O}_2\text{-}{\rm NG}}$/Å $ Q_{{\rm O}_2}$/e QN/e $d_{{\rm O}_2\text{-}{\rm N}} $/Å N含量/at%
    3 × 3 × 1 0.27 1.257 2.937 –0.19 –1.23 3.011 5.56
    4 × 4 × 1 0.31 1.261 2.896 –0.22 –1.24 2.969 3.13
    5 × 5 × 1 0.20 1.254 2.977 –0.20 –1.14 3.056 2.00
    下载: 导出CSV
  • [1]

    Yang Z, Zhang J, Kintner-Meyer M C W, Lu X, Choi D, Lemmon J P, Liu J 2011 Chem. Rev. 111 3577Google Scholar

    [2]

    Kwak W J, Kim H, Jung H G, Aurbach D, Sun Y K 2018 J. Electrochem. Soc. 165 A2274Google Scholar

    [3]

    Zhao N, Li C, Guo X 2014 Energy Technol. 2 317Google Scholar

    [4]

    Wen Z, Shen C, Lu Y 2015 ChemPlusChem 80 270Google Scholar

    [5]

    Lim H D, Lee B, Bae Y, Park H, Ko Y, Kim H, Kim J, Kang K 2017 Chem. Soc. Rev. 46 2873Google Scholar

    [6]

    Dai W, Cui X, Zhou Y, Zhao Y, Wang L, Peng L, Chen W 2019 Small Methods 3 1800358Google Scholar

    [7]

    Lu J, Li L, Park J B, Sun Y K, Wu F, Amine K 2014 Chem. Rev. 114 5611Google Scholar

    [8]

    Aurbach D, McCloskey B D, Nazar L F, Bruce P G 2016 Nat. Energy 1 1

    [9]

    Abraham K M, Jiang Z 1996 Electrochem. Sci. Technol. 143 1Google Scholar

    [10]

    Ogasawara T, Débart A l, Holzapfel M, Novák P, Bruce P G 2006 J. Am. Chem. Soc. 128 1390Google Scholar

    [11]

    Wang Y, Lai N C, Lu Y R, Zhou Y, Dong C L, Lu Y C 2018 Joule 2 2364Google Scholar

    [12]

    Lu Y, Tong S, Qiu F, Jiang J, Feng N, Zhang X, He P, Zhou H 2016 J. Power Sources 329 525Google Scholar

    [13]

    Liu C J, Brant W R, Younesi R, Dong Y Y, Edstrom K, Gustafsson T, Zhu J F 2017 ChemSusChem 10 1592Google Scholar

    [14]

    Cui Y M, Wen Z Y, Liang X, Lu Y, Jin J, Wu M F, Wu X W 2012 Energy Environ. Sci. 5 7893Google Scholar

    [15]

    Wang J J, Li Y L, Sun X L 2013 Nano Energy 2 443Google Scholar

    [16]

    Ma Z, Yuan X, Li L, Ma Z F, Wilkinson D P, Zhang L, Zhang J 2015 Energy Environ. Sci. 8 2144Google Scholar

    [17]

    Tang Y, Qiao H, Wang H, Tao P 2013 J. Mater. Chem. A 1 12512Google Scholar

    [18]

    Xiao J, Mei D, Li X, Xu W, Wang D, Graff G L, Bennett W D, Nie Z, Saraf L V, Aksay I A, Liu J, Zhang J G 2011 Nano Lett. 11 5071Google Scholar

    [19]

    Jin L, Xu L, Morein C, Chen C, Lai M, Dharmarathna S, Dobley A, Suib S L 2010 Adv. Funct. Mater. 20 3373Google Scholar

    [20]

    Gao R, Shang Z, Zheng L, Wang J, Sun L, Hu Z, Liu X 2019 Inorg. Chem 58 4989Google Scholar

    [21]

    Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K 2018 Adv. Mater. 30 1704162Google Scholar

    [22]

    Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S 2010 J. Power Sources 195 4628Google Scholar

    [23]

    Soin N, Roy S S, Lim T H, McLaughlin J A D 2011 Mater. Chem. Phys. 129 1051Google Scholar

    [24]

    Li Y, Wang J, Li X, Geng D, Li R, Sun X 2011 Chem. Commun. 47 9438Google Scholar

    [25]

    Sun B, Wang B, Su D, Xiao L, Ahn H, Wang G 2012 Carbon 50 727Google Scholar

    [26]

    Yang Y, Shi M, Zhou Q F, Li Y S, Fu Z W 2012 Electrochem. Commun. 20 11Google Scholar

    [27]

    Kim H, Lim H D, Kim J, Kang K 2014 J. Mater. Chem. A 2 33Google Scholar

    [28]

    Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J 2013 ACS Nano 7 3532Google Scholar

    [29]

    Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491Google Scholar

    [30]

    Li Y, Wang J, Li X, Liu J, Geng D, Yang J, Li R, Sun X 2011 Electrochem. Commun. 13 668Google Scholar

    [31]

    Li Y, Wang J, Li X, Geng D, Banis M N, Li R, Sun X 2012 Electrochem. Commun. 18 12Google Scholar

    [32]

    Higgins D, Chen Z, Lee D U, Chen Z 2013 J. Mater. Chem. A 1 2639Google Scholar

    [33]

    Zhao C, Yu C, Liu S, Yang J, Fan X, Huang H, Qiu J 2015 Adv. Funct. Mater. 25 6913Google Scholar

    [34]

    Yan H J, Xu B, Shi S Q, Ouyang C Y 2012 J. Appl. Phys. 112 104316Google Scholar

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [38]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [41]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [42]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [43]

    Pramanik A, Kang H S 2011 J. Phys. Chem. C 115 10971Google Scholar

    [44]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [45]

    Avouris P, Chen Z, Perebeinos V 2007 Nature Nanotech. 2 605Google Scholar

    [46]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.: Condens. Matter 21 084204Google Scholar

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [2] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240197
    [3] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [4] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [5] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究. 物理学报, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [6] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [7] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [8] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [9] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [10] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [11] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [12] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [13] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [14] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究. 物理学报, 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [15] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [16] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [17] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [18] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [19] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [20] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
  • 128801-Suppl.pdf
    128801补充材料图S1—图S7
计量
  • 文章访问数:  9100
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-01
  • 修回日期:  2019-04-11
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回