搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于双栅材料的单极性类金属氧化物半导体碳纳米管场效应管设计方法

周海亮 张民选 方粮

引用本文:
Citation:

一种基于双栅材料的单极性类金属氧化物半导体碳纳米管场效应管设计方法

周海亮, 张民选, 方粮

Dual-gate-material-based device design for unipolar metal oxide semiconductor-like carbon nanotube field effect transistors

Zhou Hai-Liang, Zhang Min-Xuan, Fang Liang
PDF
导出引用
  • 由于导电沟道-源/漏电极界面处可能发生的载流子带间隧穿,传统类金属氧化物半导体(MOS)碳纳米管场效应管呈现双极性传输特性,极大影响了器件性能的提高及其在电路中的应用.为获得具有理想单极性传输特性的类MOS碳纳米管场效应管,本文提出了一种基于双栅材料的器件设计方法.模拟结果表明,通过合理选取调节电极材料,在不影响器件亚阈值斜率的同时,该设计方法不仅能使开关电流比增大6—9个数量级,有效调节阈值范围,而且能有效消除传统类MOS碳纳米管场效应管的双极性传输特性.进一步研究表明,该设计所获得的器件性能提高与调节
    Due to carrier band-to-band tunneling (BTBT) through channel-source/drain contacts, traditional MOS(metal oxide semiconductor)-like carbon nanotube field effect transistors (CNFETs) suffer from quasi-ambipolar transport property, leaving much negative impacts on device performance and its application in circuits. To suppress such quasi-ambipolar behavior, a novel device design based on dual-gate-material device structure is proposed. The modeling results show that, with proper choice of tuning gate material, this device design can increase the ON-OFF current ratio by 6—9 orders of magnitude, tune the threshold region effectively and keep the sub-threshold slope immune from it. In addition, the quasi-ambipolar transport characteristic of C-CNFETs can be suppressed effectively using such novel device design. Further study reveals that the performance of the proposed design depends highly on the choice of tuning gate material, and the quantum capacitance in CNFETs has great effect on not only its subthreshold slope but also its transport polarity.
    • 基金项目: 国家高技术研究发展计划(批准号:2009AA01Z114,2009AA01Z124)资助的课题.
    [1]

    Martel R, Wong H S, Chan K, Avouris P 2001 IEDM Tech. Digest Washington, p159

    [2]

    Zhang Z X, Hou S M, Zhao X Y, Zhang H, Sun J P, Liu W M, Xue Z Q, Shi Z J, Gu Z N 2002 Acta Phys. Sin. 51 434 (in Chinese) [张兆祥、侯士敏、赵兴钰、张 浩、孙建平、刘惟敏、薛增泉、施祖进、顾镇南 2002 物理学报 51 434]

    [3]

    Tang N S, Yan X H, Ding J H 2005 Acta Phys. Sin. 54 333 (in Chinese) [唐娜斯、颜晓红、丁建文 2004 物理学报 54 333 ]

    [4]

    Javey A, Guo J, Wang Q, Lundstron M, Dai H 2003 Lett. Nature 424 654

    [5]

    Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P 2002 Phys. Rev. Lett. 89 106801

    [6]

    Chen J, Klinke C, Afzali A, Chan K, Avouris P 2004 IEDM Tech. Digest San Francisco p695

    [7]

    Chen J, Klinke C, Afzali A, Avouris P 2005 Appl. Phys. Lett. 86 123108

    [8]

    Lin Y M, Appenzeller J, Knoch J, Avouris P 2005 IEEE Trans. Nano. 4 481

    [9]

    Pourfath M, Ungersboeck E, Gehring A, Kosina H 2005 J. Computational Electronics 4 75

    [10]

    Appenzeller J, Lin Y M, Knock J, Chen Z H, Aviouris Ph 2005 IEEE Trans. Electron Devices 52 122568

    [11]

    Chen Z H, Farmer D, Xu S, Gordon R, Avouris P, Appenzeller J 2008 IEEE Trans. Device Letters 29 183

    [12]

    Nosho Y, Ohno Y, Kishimoto S, Mizutani T 2006 International Microprocess and Nanotechnology Conference Kamakura city of Japan, Oct., 2006 p247

    [13]

    Javey A, Tu R, Farmer D, Guo J, Gordon D, Dai H 2005 Nano Lett. 5 345

    [14]

    Long W, Ou H, Kuo J M 1999 IEEE Trans. Electron Device 46 865

    [15]

    Kumar M J, Chaudhry A 2004 IEEE Trans. Electron Devices 51 569

    [16]

    Li Z C 2009 Chin. Phys. Lett. 26 018502

    [17]

    Lee J H, Lee J B, Lee J H 1997 U.S.Patent 5670400

    [18]

    James J C, Luigi C, Mark R V 2009 U.S.Patent 7612422

    [19]

    Luan S Z, Liu H X, Jia R X 2009 Sci. Chin. Ser. E 52 2400

    [20]

    Xiang Q, Jeon J 2001 U. S. Patent 6187657

    [21]

    Muhammad M H, Naim M, Joel B, Jason S, David B, Zhibo Z 2005 Electrochem. Solid-State Lett. 28 333

    [22]

    Luryi S 1988 Appl. Phys. Lett. 52 501

    [23]

    Zhou H L, Zhang M X, Hao Y 2009 IEEE International NanoElectronics Conference, HongKong, China, Jan. 3—8, 2009 p53

    [24]

    Venugopal R, Ren Z, Datta S, Lundstrom M S, Jovanovic D 2002 J. Appl. Phys. 92 3730

    [25]

    Guo J, Ali J, Dai H J, Mark L 2004 IEDM Tech. Digest San Francisco, Dec, 2004 pp703—706

    [26]

    Fiori G, Iannaccone G, Klimeck G 2006 IEEE Trans. Electron Device 53 1782

    [27]

    Fiori G, Iannaccone G, Klimeck G 2007 IEEE Trans. Electron Device 6 475

    [28]

    Appzenzeller J, Knoch J, Radosavljevic, Avouris P 2004 Phys. Rev. Lett. 92 6802

    [29]

    Knoch J, Appzenzeller J 2008 Phys. Stat. Sol. (a) 205 679

    [30]

    Yu B, Chang L, Ahmed S, Wang H 2002 IEEE Trans. Electron. 85 1052

    [31]

    Avouris P 2002 Chem. Phys. 281 429

    [32]

    Yong K F, Frederikse H P R 1973 J. Phys.Chem.Ref.Data 2 313

    [33]

    John D L, Castro L C, Pulfrey D L 2004 J. Appl. Phys. 96 65180

    [34]

    Rahman A, Guo J, Datta S, Lundstrom M S 2003 IEEE Trans. Electron Devices 50 1853

    [35]

    Burke P J 2003 IEEE Trans. Nanotechnol. 2 55

  • [1]

    Martel R, Wong H S, Chan K, Avouris P 2001 IEDM Tech. Digest Washington, p159

    [2]

    Zhang Z X, Hou S M, Zhao X Y, Zhang H, Sun J P, Liu W M, Xue Z Q, Shi Z J, Gu Z N 2002 Acta Phys. Sin. 51 434 (in Chinese) [张兆祥、侯士敏、赵兴钰、张 浩、孙建平、刘惟敏、薛增泉、施祖进、顾镇南 2002 物理学报 51 434]

    [3]

    Tang N S, Yan X H, Ding J H 2005 Acta Phys. Sin. 54 333 (in Chinese) [唐娜斯、颜晓红、丁建文 2004 物理学报 54 333 ]

    [4]

    Javey A, Guo J, Wang Q, Lundstron M, Dai H 2003 Lett. Nature 424 654

    [5]

    Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P 2002 Phys. Rev. Lett. 89 106801

    [6]

    Chen J, Klinke C, Afzali A, Chan K, Avouris P 2004 IEDM Tech. Digest San Francisco p695

    [7]

    Chen J, Klinke C, Afzali A, Avouris P 2005 Appl. Phys. Lett. 86 123108

    [8]

    Lin Y M, Appenzeller J, Knoch J, Avouris P 2005 IEEE Trans. Nano. 4 481

    [9]

    Pourfath M, Ungersboeck E, Gehring A, Kosina H 2005 J. Computational Electronics 4 75

    [10]

    Appenzeller J, Lin Y M, Knock J, Chen Z H, Aviouris Ph 2005 IEEE Trans. Electron Devices 52 122568

    [11]

    Chen Z H, Farmer D, Xu S, Gordon R, Avouris P, Appenzeller J 2008 IEEE Trans. Device Letters 29 183

    [12]

    Nosho Y, Ohno Y, Kishimoto S, Mizutani T 2006 International Microprocess and Nanotechnology Conference Kamakura city of Japan, Oct., 2006 p247

    [13]

    Javey A, Tu R, Farmer D, Guo J, Gordon D, Dai H 2005 Nano Lett. 5 345

    [14]

    Long W, Ou H, Kuo J M 1999 IEEE Trans. Electron Device 46 865

    [15]

    Kumar M J, Chaudhry A 2004 IEEE Trans. Electron Devices 51 569

    [16]

    Li Z C 2009 Chin. Phys. Lett. 26 018502

    [17]

    Lee J H, Lee J B, Lee J H 1997 U.S.Patent 5670400

    [18]

    James J C, Luigi C, Mark R V 2009 U.S.Patent 7612422

    [19]

    Luan S Z, Liu H X, Jia R X 2009 Sci. Chin. Ser. E 52 2400

    [20]

    Xiang Q, Jeon J 2001 U. S. Patent 6187657

    [21]

    Muhammad M H, Naim M, Joel B, Jason S, David B, Zhibo Z 2005 Electrochem. Solid-State Lett. 28 333

    [22]

    Luryi S 1988 Appl. Phys. Lett. 52 501

    [23]

    Zhou H L, Zhang M X, Hao Y 2009 IEEE International NanoElectronics Conference, HongKong, China, Jan. 3—8, 2009 p53

    [24]

    Venugopal R, Ren Z, Datta S, Lundstrom M S, Jovanovic D 2002 J. Appl. Phys. 92 3730

    [25]

    Guo J, Ali J, Dai H J, Mark L 2004 IEDM Tech. Digest San Francisco, Dec, 2004 pp703—706

    [26]

    Fiori G, Iannaccone G, Klimeck G 2006 IEEE Trans. Electron Device 53 1782

    [27]

    Fiori G, Iannaccone G, Klimeck G 2007 IEEE Trans. Electron Device 6 475

    [28]

    Appzenzeller J, Knoch J, Radosavljevic, Avouris P 2004 Phys. Rev. Lett. 92 6802

    [29]

    Knoch J, Appzenzeller J 2008 Phys. Stat. Sol. (a) 205 679

    [30]

    Yu B, Chang L, Ahmed S, Wang H 2002 IEEE Trans. Electron. 85 1052

    [31]

    Avouris P 2002 Chem. Phys. 281 429

    [32]

    Yong K F, Frederikse H P R 1973 J. Phys.Chem.Ref.Data 2 313

    [33]

    John D L, Castro L C, Pulfrey D L 2004 J. Appl. Phys. 96 65180

    [34]

    Rahman A, Guo J, Datta S, Lundstrom M S 2003 IEEE Trans. Electron Devices 50 1853

    [35]

    Burke P J 2003 IEEE Trans. Nanotechnol. 2 55

  • [1] 刘佳文, 姚若河, 刘玉荣, 耿魁伟. 一个圆柱形双栅场效应晶体管的物理模型. 物理学报, 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [2] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [3] 郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣. 射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响. 物理学报, 2017, 66(7): 076101. doi: 10.7498/aps.66.076101
    [4] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [5] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [6] 辛艳辉, 刘红侠, 王树龙, 范小娇. 对称三材料双栅应变硅金属氧化物半导体场效应晶体管二维解析模型. 物理学报, 2014, 63(14): 148502. doi: 10.7498/aps.63.148502
    [7] 辛艳辉, 刘红侠, 王树龙, 范小娇. 堆叠栅介质对称双栅单Halo应变Si金属氧化物半导体场效应管二维模型. 物理学报, 2014, 63(24): 248502. doi: 10.7498/aps.63.248502
    [8] 刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华. 基于异质双栅电极结构提高碳纳米管场效应晶体管电子输运效率. 物理学报, 2013, 62(14): 147308. doi: 10.7498/aps.62.147308
    [9] 赵晓辉, 蔡理, 张鹏. 声子散射下碳纳米管场效应管建模方法研究. 物理学报, 2013, 62(10): 100301. doi: 10.7498/aps.62.100301
    [10] 赵晓辉, 蔡理, 张鹏. 一种碳纳米管场效应管的HSPICE模型. 物理学报, 2013, 62(13): 130506. doi: 10.7498/aps.62.130506
    [11] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [12] 吴铁峰, 张鹤鸣, 王冠宇, 胡辉勇. 小尺寸应变Si金属氧化物半导体场效应晶体管栅隧穿电流预测模型. 物理学报, 2011, 60(2): 027305. doi: 10.7498/aps.60.027305
    [13] 姚小虎, 张晓晴, 韩强. 轴向冲击载荷作用下双壁碳纳米管的动力屈曲. 物理学报, 2011, 60(9): 096202. doi: 10.7498/aps.60.096202
    [14] 周海亮, 池雅庆, 张民选, 方粮. 基于梯度掺杂策略的碳纳米管场效应管性能优化. 物理学报, 2010, 59(11): 8104-8112. doi: 10.7498/aps.59.8104
    [15] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟. 物理学报, 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [16] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 物理学报, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [17] 王 磊, 张洪武, 王晋宝. 范德华力对双壁碳纳米管轴向压缩屈曲行为的影响. 物理学报, 2007, 56(3): 1506-1513. doi: 10.7498/aps.56.1506
    [18] 倪向贵, 殷建伟. 拉伸条件下双壁碳纳米管弹性性能的原子模拟. 物理学报, 2006, 55(12): 6522-6525. doi: 10.7498/aps.55.6522
    [19] 刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星. 公度双壁碳纳米管层间耦合对其场发射特性影响的研究. 物理学报, 2006, 55(6): 2830-2837. doi: 10.7498/aps.55.2830
    [20] 陈将伟, 杨林峰. 有限长双壁碳纳米管的电子输运性质. 物理学报, 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
计量
  • 文章访问数:  6486
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-29
  • 修回日期:  2009-11-26
  • 刊出日期:  2010-07-15

/

返回文章
返回