搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用级联倍频方法提高倍频系统输出稳定性研究

邓青华 张小民 丁磊 唐军 谢旭东 卢振华 赵润昌 董一方

引用本文:
Citation:

应用级联倍频方法提高倍频系统输出稳定性研究

邓青华, 张小民, 丁磊, 唐军, 谢旭东, 卢振华, 赵润昌, 董一方

Stabilizing second harmonic generation output using cascaded crystals

Deng Qing-Hua, Zhang Xiao-Min, Ding Lei, Tang Jun, Xie Xu-Dong, Lu Zhen-Hua, Zhao Run-Chang, Dong Yi-Fang
PDF
导出引用
  • 提出应用级联倍频方法提高倍频系统输出稳定性,并就该方法的有效性进行了理论分析和模拟计算.分析和计算结果不但证明级联倍频方法能实现倍频系统稳定输出,而且还表明可以通过仔细调节第一块倍频晶体中波矢方向 k 与光轴间夹角、两块倍频晶体间的间隔,能调节改变实现倍频系统最稳输出时所需第二块晶体的理论计算长度,使之与第二块倍频晶体的实际加工长度一致,最终实现系统稳定倍频输出.级联倍频方法在实现高输出稳定性的同时能实现高的倍频转换效率,对应用于光参量啁啾脉冲放大系统的高稳定抽运源系统的设计建造具有重要参考意义.
    Theoretical study and numerical simulation were carried out on the newly proposed way of cascaded second harmonic generation (SHG) to get stable SHG output. The results certify that by way of using cascaded SHG one can obtain stable SHG output. Our results also show that by tuning the angle between k and the optical axis and the distance between the two SHG crystals, the length of the second SHG crystal for most stable SHG can also be tuned. When the length for most stable SHG is tuned to the real length of the second SHG crystal, stable SHG output was be obtained. Both stable SHG output and high SHG conversion efficiency can be got using this new way, and this will help a lot to design the pumping system for the optical pulse chirped amplifying system.
    [1]

    Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys.Sin. 56 4635(in Chinese)[刘华刚、章若冰、张海清、朱 晨、马 晶、王清月 2007 物理学报 56 4635]

    [2]

    Liu H G, Zhang R B, Zhu C, Cai L, Wang Q Y 2007 Acta Phys.Sin. 57 2981(in Chinese)[刘华刚、章若冰、朱 晨、柴 路、王清月 2008 物理学报 57 2981] Zeng S G, Zhang B 2009 Acta Phys.Sin. 59 2476(in Chinese)[曾曙光、张 彬 2009 物理学报 58 2476] Zhang S K, Fujita M, Yamanaka M. 2000 Opt. Commun. 184 451 Liu H J, Chen G F, Zhao W 2004 Acta Phys. Sin. 53 105(in Chinese)[刘红军、陈国夫、赵 卫 2004 物理学报 53 105] Deng Q H, Peng H S, Li M Z, Ding L, Wang J J, Tang J, Luo Y M, Lin H H, Lv X J, Wang M Z 2007 Chin. J. Lasers 34 661 (in Chinese)[邓青华、彭翰生、李明中、丁 磊、王建军、唐 军、罗亦明、林宏奂、吕新杰、王明哲 2007 中国激光 34 661]

    [3]

    Eimerl D 1987 IEEE J .Quantum Electron. QE-23 1361 Smith A V, Armstrong D J, Alford W J 1998 J. Opt. Soc. Am. B 15 122

    [4]

    Brown M 1998 Opt. Lett. 23 1591

    [5]

    Yao J Q 1995 Nonlinear Frequency Conversion and Laser Tuning Technique(Beijing:Science Press)p70(in Chinese)[姚建铨 1995 非线性频率转换和激光调谐技术(北京:科学出版社)第70页]

    [6]

    Zhang K C, Wang X M 2005 Science of Nonlinear Optics Crystal Materials(Beijing:Science Press)(in Chinese)[张克从、王希敏 2005 非线性光学晶体材料科学(北京:科学出版社)]

  • [1]

    Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys.Sin. 56 4635(in Chinese)[刘华刚、章若冰、张海清、朱 晨、马 晶、王清月 2007 物理学报 56 4635]

    [2]

    Liu H G, Zhang R B, Zhu C, Cai L, Wang Q Y 2007 Acta Phys.Sin. 57 2981(in Chinese)[刘华刚、章若冰、朱 晨、柴 路、王清月 2008 物理学报 57 2981] Zeng S G, Zhang B 2009 Acta Phys.Sin. 59 2476(in Chinese)[曾曙光、张 彬 2009 物理学报 58 2476] Zhang S K, Fujita M, Yamanaka M. 2000 Opt. Commun. 184 451 Liu H J, Chen G F, Zhao W 2004 Acta Phys. Sin. 53 105(in Chinese)[刘红军、陈国夫、赵 卫 2004 物理学报 53 105] Deng Q H, Peng H S, Li M Z, Ding L, Wang J J, Tang J, Luo Y M, Lin H H, Lv X J, Wang M Z 2007 Chin. J. Lasers 34 661 (in Chinese)[邓青华、彭翰生、李明中、丁 磊、王建军、唐 军、罗亦明、林宏奂、吕新杰、王明哲 2007 中国激光 34 661]

    [3]

    Eimerl D 1987 IEEE J .Quantum Electron. QE-23 1361 Smith A V, Armstrong D J, Alford W J 1998 J. Opt. Soc. Am. B 15 122

    [4]

    Brown M 1998 Opt. Lett. 23 1591

    [5]

    Yao J Q 1995 Nonlinear Frequency Conversion and Laser Tuning Technique(Beijing:Science Press)p70(in Chinese)[姚建铨 1995 非线性频率转换和激光调谐技术(北京:科学出版社)第70页]

    [6]

    Zhang K C, Wang X M 2005 Science of Nonlinear Optics Crystal Materials(Beijing:Science Press)(in Chinese)[张克从、王希敏 2005 非线性光学晶体材料科学(北京:科学出版社)]

计量
  • 文章访问数:  8245
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-11
  • 修回日期:  2010-04-16
  • 刊出日期:  2011-01-05

/

返回文章
返回