搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于截断区域特征函数展开法的金属管材电涡流检测线圈阻抗解析模型

范孟豹 尹亚丹 曹丙花

引用本文:
Citation:

基于截断区域特征函数展开法的金属管材电涡流检测线圈阻抗解析模型

范孟豹, 尹亚丹, 曹丙花

Analytical modeling of coil impedance based on truncated region eigenfunction expansion method in eddy current tube inspection

Fan Meng-Bao, Yin Ya-Dan, Cao Bing-Hua
PDF
导出引用
  • 针对金属管材电涡流检测线圈阻抗的理论计算问题,通过施加磁绝缘边界条件, 应用分离变量法和Cheng矩阵法建立了内穿式和外穿式线圈阻抗解析模型.因模型含有与虚宗量Bessel函数有关的积分, 通过研究函数特性,提出基于高斯积分算法的数值计算方法.以铜管管壁减薄为例进行仿真研究,并与Dodd模型、有限元模型进行了对比.比较表明,三种方法的仿真结果基本一致,验证了所建立模型的正确性.与传统的Dodd模型、有限元模型相比,所建立的模型具有效率高、精度调整方便等优点.
    In order to calculate theoretically the coil impedance, the separation of variables method and the Cheng matrix method are used to establish the analytical model by applying the magnetic insulation condition in eddy current tube detection with encircling probes inside and outside respectively. In the established model, there exists a definite integral related to modified Bessel function. Gaussian integral algorithm is proposed to accurately perform the numerical calculation. Simulations are carried out on the thinning of a copper tube wall thickness using the presented model, traditional Dodd model and finite element model. Their results are in good agreement with each other, demonstrating that the derived analytical model is correct. Compared with the Dodd and finite element models, the improved model has some advantages such as good efficiency, easy adjustment of accuracy and so on.
    • 基金项目: 国家高技术研究发展计划(批准号: 2008AA062202)、 中国博士后科学基金(批准号: 20090460086, 201003606)和中国矿业大学青年自然科学基金(批准号: 2009A018)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA062202), the China Postdoctoral Science Foundation (Grant Nos. 20090460086, 201003606), and the Natural Science Foundation for Young Scholar of China Univeristy of Mining and Technology (Grant No. 2009A018).
    [1]

    Yusa N 2009 Nondestruct. Test. Evat. 24 39

    [2]

    Huang S L, Xu C, Zhao W, Xu P 2011 J. Tsinghua Univ. ( Sci. Techn.) 51 390 (in Chinese) [黄松岭, 徐琛, 赵伟, 许鹏 2011 清华大学学报(自然科学版) 51 390]

    [3]

    Chen D Z, Huang Z H, Liao S S, Nie Y 2007 J. Huazhong Univ. Sci. Techn. (Nat. Sci. Ed.) 35 41 (in Chinese) [陈德智, 黄振华, 廖述圣, 聂勇 2007 华中科技大学学报(自然科学版) 35 41]

    [4]

    Wu X J, Huang C, Ding X, Lin S Q, Shen G T 2010 Nondestr. Test. 32 127 (in Chinese) [武新军, 黄琛, 丁旭, 林树青, 沈功田 2010 无损检测 32 127]

    [5]

    Hao K S, Huang S L, Zhao W, Wang S 2011 Acta Phys. Sin. 60 078103 (in Chinese) [郝宽胜, 黄松岭, 赵伟, 王珅 2011 物理学报 60 078103]

    [6]

    Xie L, Lei Y Z 2006 Acta Phys. Sin. 55 4397 (in Chinese) [谢莉, 雷银照 2006 物理学报 55 4397]

    [7]

    Dodd C V, Deeds W E 1968 J. Appl. Phys. 39 2829

    [8]

    Dodd C V, Cheng C C, Deeds W E 1974 J. Appl. Phys. 45 638

    [9]

    Theodoulidis T P, Kriezis E E 2005 J. Mater. Process. Technol. 161 343

    [10]

    Theodoulidis T P 2004 Int. J. Appl. Electromagn. Mech. 19 207

    [11]

    Theodoulidis T P 2008 J. Appl. Phys. 103 024905

    [12]

    Theodoulidis T P, Poulakis N 2010 NDT E Int. 43 13

    [13]

    Bowler J R, Theodoulidis T P 2005 J. Phys. D 38 2861

    [14]

    Sun H, Bowler J R, Theodoulidis T P 2005 IEEE Trans. Magn. 41 2455

    [15]

    Skarlatos A, Theodoulidis T P 2010 IEEE Trans. Magn. 46 3885

    [16]

    Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese) [范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁 2009 物理学报 58 5950]

    [17]

    Hu J H 2008 Numerical Method (Xuzhou: China University of Ming and Technology Press) p119 (in Chinese) [胡建华 2008 数值计算方法 (徐州: 中国矿业大学出版社) 第119页]

  • [1]

    Yusa N 2009 Nondestruct. Test. Evat. 24 39

    [2]

    Huang S L, Xu C, Zhao W, Xu P 2011 J. Tsinghua Univ. ( Sci. Techn.) 51 390 (in Chinese) [黄松岭, 徐琛, 赵伟, 许鹏 2011 清华大学学报(自然科学版) 51 390]

    [3]

    Chen D Z, Huang Z H, Liao S S, Nie Y 2007 J. Huazhong Univ. Sci. Techn. (Nat. Sci. Ed.) 35 41 (in Chinese) [陈德智, 黄振华, 廖述圣, 聂勇 2007 华中科技大学学报(自然科学版) 35 41]

    [4]

    Wu X J, Huang C, Ding X, Lin S Q, Shen G T 2010 Nondestr. Test. 32 127 (in Chinese) [武新军, 黄琛, 丁旭, 林树青, 沈功田 2010 无损检测 32 127]

    [5]

    Hao K S, Huang S L, Zhao W, Wang S 2011 Acta Phys. Sin. 60 078103 (in Chinese) [郝宽胜, 黄松岭, 赵伟, 王珅 2011 物理学报 60 078103]

    [6]

    Xie L, Lei Y Z 2006 Acta Phys. Sin. 55 4397 (in Chinese) [谢莉, 雷银照 2006 物理学报 55 4397]

    [7]

    Dodd C V, Deeds W E 1968 J. Appl. Phys. 39 2829

    [8]

    Dodd C V, Cheng C C, Deeds W E 1974 J. Appl. Phys. 45 638

    [9]

    Theodoulidis T P, Kriezis E E 2005 J. Mater. Process. Technol. 161 343

    [10]

    Theodoulidis T P 2004 Int. J. Appl. Electromagn. Mech. 19 207

    [11]

    Theodoulidis T P 2008 J. Appl. Phys. 103 024905

    [12]

    Theodoulidis T P, Poulakis N 2010 NDT E Int. 43 13

    [13]

    Bowler J R, Theodoulidis T P 2005 J. Phys. D 38 2861

    [14]

    Sun H, Bowler J R, Theodoulidis T P 2005 IEEE Trans. Magn. 41 2455

    [15]

    Skarlatos A, Theodoulidis T P 2010 IEEE Trans. Magn. 46 3885

    [16]

    Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese) [范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁 2009 物理学报 58 5950]

    [17]

    Hu J H 2008 Numerical Method (Xuzhou: China University of Ming and Technology Press) p119 (in Chinese) [胡建华 2008 数值计算方法 (徐州: 中国矿业大学出版社) 第119页]

  • [1] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [2] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211600
    [3] 张卿, 武新军. 基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型. 物理学报, 2017, 66(3): 038102. doi: 10.7498/aps.66.038102
    [4] 陈兴乐, 雷银照. 导电导磁管道外任意放置线圈激励下脉冲涡流场时域解析解. 物理学报, 2014, 63(24): 240301. doi: 10.7498/aps.63.240301
    [5] 高鹏, 王超, 支亚, 李旸, 王立玢, 丛正. 铝合金焊缝电涡流磁场信号的非线性特征提取及分类方法研究. 物理学报, 2014, 63(13): 134103. doi: 10.7498/aps.63.134103
    [6] 郝宽胜, 黄松岭, 赵伟, 王珅. 基于二阶矢量位的矩形截面回折线圈阻抗和脉冲磁场的解析建模与计算. 物理学报, 2011, 60(7): 078103. doi: 10.7498/aps.60.078103
    [7] 范孟豹, 曹丙花, 杨雪锋. 脉冲涡流检测瞬态涡流场的时域解析模型. 物理学报, 2010, 59(11): 7570-7574. doi: 10.7498/aps.59.7570
    [8] 范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁. 基于反射与折射理论的电涡流检测探头阻抗解析模型. 物理学报, 2009, 58(9): 5950-5954. doi: 10.7498/aps.58.5950
    [9] 张谷令, 王久丽, 陈光良, 冯文然, 顾伟超, 牛二武, 范松华, 刘赤子, 杨思泽. 金属管件内壁栅极增强等离子体源离子注入的轴向特性研究. 物理学报, 2007, 56(3): 1461-1466. doi: 10.7498/aps.56.1461
    [10] 吴国将, 张 苗, 史良马, 张文亮, 韩家骅. 扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解. 物理学报, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [11] 陈春霞, 杜 磊, 何 亮, 胡 瑾, 黄小君, 卫 涛. 金属互连电迁移噪声的分形特征. 物理学报, 2007, 56(11): 6674-6679. doi: 10.7498/aps.56.6674
    [12] 吴国将, 韩家骅, 史良马, 张 苗. 一般变换下双Jacobi椭圆函数展开法及应用. 物理学报, 2006, 55(8): 3858-3863. doi: 10.7498/aps.55.3858
    [13] 沈 杰, 宁瑞鹏, 刘 颖, 李鲠颖. 一种减小梯度线圈产生的涡流的方法. 物理学报, 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
    [14] 刘官厅, 范天佑. 一般变换下的Jacobi椭圆函数展开法及应用. 物理学报, 2004, 53(3): 676-679. doi: 10.7498/aps.53.676
    [15] 石玉仁, 郭 鹏, 吕克璞, 段文山. 修正Jacobi椭圆函数展开法及其应用. 物理学报, 2004, 53(10): 3265-3269. doi: 10.7498/aps.53.3265
    [16] 张善卿, 李志斌. Jacobi 椭圆函数展开法的新应用. 物理学报, 2003, 52(5): 1066-1070. doi: 10.7498/aps.52.1066
    [17] 刘式适, 傅遵涛, 刘式达, 赵强. Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用. 物理学报, 2001, 50(11): 2068-2073. doi: 10.7498/aps.50.2068
    [18] 李明轩. 声阻法中检测阻抗的测量和提高检测器灵敏度的设计. 物理学报, 1974, 23(3): 3-12. doi: 10.7498/aps.23.3-2
    [19] 于渌. 铁磁金属的表面阻抗与自旋波共振. 物理学报, 1964, 20(7): 607-623. doi: 10.7498/aps.20.607
    [20] 黄祖洽. 无限长黑圆柱情形下密恩(Milne)问题的近似解(球谐函数展开法). 物理学报, 1957, 13(4): 257-270. doi: 10.7498/aps.13.257
计量
  • 文章访问数:  6802
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-26
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回