搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上浮气泡在壁面处的弹跳特性研究

李帅 张阿漫

引用本文:
Citation:

上浮气泡在壁面处的弹跳特性研究

李帅, 张阿漫

Study on a rising bubble bouncing near a rigid boundary

Li Shuai, Zhang A-Man
PDF
导出引用
  • 本文针对毫米量级的上浮气泡在壁面处的弹跳现象进行数值研究. 基于势流方法求解气泡的运动,同时考虑气泡的表面张力作用. 在伯努利方程中,对气泡与壁面之间水膜中因黏性引起的压力梯度进行修正,开发相应的计算程序,计算值与实验值符合良好. 从气泡弹跳的基本现象入手,研究了特征参数对气泡弹跳过程的动态特性以及最终平衡形态的影响. 发现随着泡在撞击壁面之前上浮距离增大,气泡回弹距离和弹跳周期增加,但是当上浮距离增加到一定程度后将不会影响气泡的弹跳特性;表面张力是影响气泡弹跳特性的重要因素,气泡的弹跳周期随其增大逐渐减小,但回弹距离却呈现先增后减的规律;最后,影响气泡最终平衡形态的主要因素是气泡的浮力参数与韦伯数.
    Some numerical studies were carried out on micrometer-sized rising bubble bouncing near a rigid boundary. Taking surface tension into consideration, the bubble motion could be solved using the potential flow theory. A correction should be made in Bernoulli equation because the pressure gradient was caused by the viscosity between the bubble and the wall. The numerical result agree well with the experimental data. Based on the fundamental phenomenon, we have studied the influence of characteristic parameter on bubble bouncing behavior, and the balanced shape due to the action of the wall. With the increase of the rising distance of the bubble, the distance of the bubble bouncing downward and the period of bouncing would increase. However, they would not change obviously when the rising distance is large enough. Surface tension has great effect on the dynamic behavior of the bubble. The bouncing period decreases when surface tension becomes large, but the bouncing distance will have an increase before it gradually decreases. Finally, the balanced shape of the bubble due to the wall effect can be mainly controlled by buoyance parameter and the Weber number.
    • 基金项目: 中组部青年拔尖人才支持计划,优秀青年科学基金(批准号:51222904)和新世纪优秀人才支持计划(批准号:NCET100054)资助的课题.
    • Funds: Project supported by the Program for the Top Young and Middle-aged Innovative Talents of the Organization Department of the Central Committee of the CPC, Excellent Young Scientists Fund (Grant No.51222904), and the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET100054).
    [1]

    Duineveld P C 1998 Appl. Sci. Res. 58 409

    [2]

    Zhang A M, Ni B Y, Song B Y 2010 Appl. Math. and Mech. 31 449

    [3]

    Tsao H K, Koch D 1997 Phys. Fluids 9 44

    [4]

    Malysa K, Krasowska M, Krzan M 2005 Adv. Colloid. Interface. Sci. 114-115 205

    [5]

    Toshiyuki S, Masao W, Tohru F 2005 Chem. Eng. Sci. 60 5372

    [6]

    Wang H, Zhang Z Y, Yang Y M 2008 Chin. Phys. B 17 3847

    [7]

    Wang H, Zhang Z Y, Yang Y M 2010 Chin. Phys. B 19 026801

    [8]

    Klaseboer E, Manic R, Khoo B C, Chan D Y C 2011 Eng. Anal. Bound. Elem. 35 489

    [9]

    Shopov P J, Minev P D, Bazhlekov I B, Zapryanov Z D 1990 J. Fluid Mech. 219 241

    [10]

    Canot E, Davoust L, Hammoumi M E, Lachkar D 2003 Theoret. Comput. Fluid Dynamics 17 51

    [11]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 1662(in Chinese)[张阿漫, 姚熊亮 2008 物理学报 57 1662]

    [12]

    Liu Y L, Wang Y, Zhang A M 2013 Acta Phys. Sin. 62 214703 (in Chinese) [刘云龙, 汪玉, 张阿漫2013物理学报 62 214703]

    [13]

    Newman J N 1977 Marine Hydrodynamics (1st Ed.) (London: MIT Press) p131

    [14]

    Wang Q X, Teo K S, Khoo B C 1996 Theoret. Comput. Fluid Dynamics 8 73

    [15]

    Best J P 1993 J. Fluid Mech. 251 79

  • [1]

    Duineveld P C 1998 Appl. Sci. Res. 58 409

    [2]

    Zhang A M, Ni B Y, Song B Y 2010 Appl. Math. and Mech. 31 449

    [3]

    Tsao H K, Koch D 1997 Phys. Fluids 9 44

    [4]

    Malysa K, Krasowska M, Krzan M 2005 Adv. Colloid. Interface. Sci. 114-115 205

    [5]

    Toshiyuki S, Masao W, Tohru F 2005 Chem. Eng. Sci. 60 5372

    [6]

    Wang H, Zhang Z Y, Yang Y M 2008 Chin. Phys. B 17 3847

    [7]

    Wang H, Zhang Z Y, Yang Y M 2010 Chin. Phys. B 19 026801

    [8]

    Klaseboer E, Manic R, Khoo B C, Chan D Y C 2011 Eng. Anal. Bound. Elem. 35 489

    [9]

    Shopov P J, Minev P D, Bazhlekov I B, Zapryanov Z D 1990 J. Fluid Mech. 219 241

    [10]

    Canot E, Davoust L, Hammoumi M E, Lachkar D 2003 Theoret. Comput. Fluid Dynamics 17 51

    [11]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 1662(in Chinese)[张阿漫, 姚熊亮 2008 物理学报 57 1662]

    [12]

    Liu Y L, Wang Y, Zhang A M 2013 Acta Phys. Sin. 62 214703 (in Chinese) [刘云龙, 汪玉, 张阿漫2013物理学报 62 214703]

    [13]

    Newman J N 1977 Marine Hydrodynamics (1st Ed.) (London: MIT Press) p131

    [14]

    Wang Q X, Teo K S, Khoo B C 1996 Theoret. Comput. Fluid Dynamics 8 73

    [15]

    Best J P 1993 J. Fluid Mech. 251 79

  • [1] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [2] 刘小娟, 李占琪, 金志刚, 黄智, 魏加争, 赵存陆, 王战涛. 电驱动引发液滴弹跳过程中的能量转换. 物理学报, 2022, 71(11): 114702. doi: 10.7498/aps.71.20212133
    [3] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用. 物理学报, 2020, 69(23): 234301. doi: 10.7498/aps.69.20200764
    [4] 李红星, 陶春辉, 刘富林, 周建平. 气泡对沉积物声学特性影响研究:以东海沉积物为例. 物理学报, 2015, 64(10): 109101. doi: 10.7498/aps.64.109101
    [5] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究. 物理学报, 2014, 63(19): 194703. doi: 10.7498/aps.63.194703
    [6] 史冬岩, 王志凯, 张阿漫. 相同尺度下气泡与复杂壁面的耦合特性研究. 物理学报, 2014, 63(17): 174701. doi: 10.7498/aps.63.174701
    [7] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [8] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究. 物理学报, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [9] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究. 物理学报, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [10] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究. 物理学报, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [11] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究. 物理学报, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [12] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [13] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [14] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [15] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究. 物理学报, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [16] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟. 物理学报, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [17] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识. 物理学报, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [18] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究. 物理学报, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [19] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究. 物理学报, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [20] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
计量
  • 文章访问数:  5661
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-28
  • 修回日期:  2013-11-08
  • 刊出日期:  2014-03-05

/

返回文章
返回