搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AZO/VO2/AZO结构的电压诱导相变红外光调制器

徐婷婷 李毅 陈培祖 蒋蔚 伍征义 刘志敏 张娇 方宝英 王晓华 肖寒

引用本文:
Citation:

基于AZO/VO2/AZO结构的电压诱导相变红外光调制器

徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒

Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition

Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han
PDF
导出引用
  • 采用直流磁控溅射和后退火工艺先在掺Al氧化锌(AZO)导电玻璃基底上制备了高质量的VO2薄膜,再在VO2膜层上制备AZO导电膜,最终制备出了AZO/VO2/AZO三明治结构.测试了VO2/AZO复合薄膜和AZO/VO2/AZO三明治结构的组分、微结构以及光学特性,结果表明VO2/AZO复合薄膜在8002300 nm红外区域其相变前后的最大透过率差值达24%,而AZO/VO2/AZO三明治结构在相同波长范围内其相变前后的最大透过率差值可达31%.通过在AZO/VO2/AZO三明治结构导电膜层上施加不同电压,观察到不同外界温度下电流的突变,当外界温度越高,所需阈值电压越低.AZO/VO2/AZO三明治结构性能稳定,制备工艺简单,有望应用于集成式红外光调制器.
    Electric field induced semiconductor-metal transition characteristics of VO2 indicate extensive application prospects in smart window,storage device,intelligent radiator,signal generator,optical switch,etc.In order to explore the electric field induced semiconductor-metal transition characteristics of VO2,AZO/VO2/AZO sandwiched structure is prepared to study the problem of optical modulation under the action of applied electrical drive.Firstly,V thin film is fabricated by direct current magnetron sputtering on a ZnO-doped Al (AZO) conductive glass substrate.The operating pressure during sputtering is kept at 3.610-1 Pa,and the sputtering current and voltage are 2 A and 400 V,respectively.The VO2/AZO composite film is prepared by annealing under the air atmosphere for 3.5 h at 400℃.Secondly,another AZO conductive film is deposited by radio frequency magnetron sputtering on the top of the VO2 thin film.Thirdly, Pt electrodes are patterned on the bottom and top of AZO conductive glass by using photolithography and chemical etching processes,and finally AZO/VO2/AZO sandwiched structure is achieved.The crystal structure of the thin film is analyzed by X-ray diffraction (XRD) apparatus.The surface morphologies of the samples were studied by atomic force microscope (AFM).X-ray photoelectron spectroscopy (XPS) system is used to study the relative quantity of the surface elements.The current-voltage characteristics are measured by semiconductor parameter analyzer.The optical properties of the AZO/VO2/AZO sandwiched structure are determined by spectrophotometer.XRD results show that the VO2 thin film has a distinct (011) preferred orientation and well-crystallized structure.AFM results indicate that the VO2 thin film has compact nanostructure and smooth surface with a surface roughness of 5.975 nm.XPS results reveal that the VO2 thin film has high purity.Optical transmittance curves show that the maximum change of the optical transmittance measured from VO2/AZO composite film during the phase transformation is 24% at 800-2300 nm,while the maximum modulation of the transmittance of AZO/VO2/AZO sandwiched structure reaches 31% in the same wavelength range. When applying different voltages to AZO/VO2/AZO sandwiched structure at different ambient temperatures,the current abrupt change can be seen at the threshold voltage.The threshold voltage of the thin film phase transition is 8.1 V at 20℃,while the threshold voltage is 5.9 V at 40℃.However,the threshold voltage is zero at 60℃,which indicates that the semiconductor-metal transition of the VO2 thin film happens at that temperature.It can be found that the higher the ambient temperature,the lower the threshold voltage is.AZO/VO2/AZO sandwiched structure has stable properties with simple preparation technology,and its modulation property meets the performance requirements for electro-optic modulator under applying the electrical drive,which is expected to be applied to the integrated infrared modulator.
      通信作者: 李毅, optolyclp@263.net
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA03Z348)、教育部科学技术研究重点项目(批准号:207033)、上海市科学技术委员会科技攻关计划(批准号:06DZ11415)、上海市教育委员会科技创新重点项目(批准号:10ZZ94)和上海市领军人才培养计划(批准号:2011-026)资助的课题.
      Corresponding author: Li Yi, optolyclp@263.net
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Foundation for Key Program of Ministry of Education, China (Grant No. 207033), the Science and Technology Research Project of Shanghai Science and Technology Commission, China (Grant No. 06DZ11415), the Key Science and Technology Research Project of Shanghai Committee, China (Grant No. 10ZZ94), and the Shanghai Talent Leading Plan, China (Grant No. 2011-026).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lee M H, Kim M G, Song H K 1996 Thin Solid Films 290 30

    [3]

    Maaza M, Hamidi D, Gibaud A, Kana J B K 2011 ICTON 29 1

    [4]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C 2005 Appl. Phys. Lett. 87 51910

    [5]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [6]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76

    [7]

    Lee J S, Ortolani M, Ginolas A, Chang Y J, Noh T W, Schade U 2007 Physica C 460 549

    [8]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics·Laser 22 656(in Chinese)[张楷亮, 韦晓莹, 王芳, 武长强, 赵金石2011光电子·激光 22 656]

    [9]

    Fang B Y, Li Y, Tong G X, Wang X H, Yan M, Liang Q, Wang F, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2015 Opt. Mater. 47 225

    [10]

    Seo G, Kim B J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Dev. Lett. 32 1582

    [11]

    Soltani M, Chaker M, Haddad E, Kruzelecky R 2006 Mea. Sci. Technol. 17 1052

    [12]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [13]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.:Conden. Matter 12 8837

    [14]

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160(in Chinese)[梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达2012纳米技术与精密工程 10 160]

    [15]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武2013物理学报 62 217201]

    [16]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [17]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017202 (in Chinese)[熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰2015物理学报 64 017102]

    [18]

    Markov P, Ryckman J D, Marvel R E, Hallman K A, Haglund R F, Weiss S M 2013 CLEO 2013 CTu2F.7

    [19]

    Schuler T, Aegerter M A 1999 Thin Solid Films 351 125

    [20]

    Perkins J D, Cueto J A D, Alleman J L, Warmsinghb C, Keyesa B M, Gedvilasa L M, Parillaa P A, Toa B, Readeyb D W, Ginleya D S 2002 Thin Solid Films 411 152

    [21]

    Yuan W R, Li Y, Wang X H, Zheng H Z, Chen S J, Chen J K, Sun Y, Tang J Y, Liu F, Hao R L, Fang B Y, Xiao H 2014 Acta Phys. Sin. 63 218101 (in Chinese)[袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒2014物理学报 63 218101]

    [22]

    Xiao H, Li Y, Yuan W R, Fang B Y, Wang X H, Hao R L, Wu Z Y, Xu T T, Jiang W, Chen P Z 2016 Infrared Phys. Technol. 76 580

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lee M H, Kim M G, Song H K 1996 Thin Solid Films 290 30

    [3]

    Maaza M, Hamidi D, Gibaud A, Kana J B K 2011 ICTON 29 1

    [4]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C 2005 Appl. Phys. Lett. 87 51910

    [5]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [6]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76

    [7]

    Lee J S, Ortolani M, Ginolas A, Chang Y J, Noh T W, Schade U 2007 Physica C 460 549

    [8]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics·Laser 22 656(in Chinese)[张楷亮, 韦晓莹, 王芳, 武长强, 赵金石2011光电子·激光 22 656]

    [9]

    Fang B Y, Li Y, Tong G X, Wang X H, Yan M, Liang Q, Wang F, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2015 Opt. Mater. 47 225

    [10]

    Seo G, Kim B J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Dev. Lett. 32 1582

    [11]

    Soltani M, Chaker M, Haddad E, Kruzelecky R 2006 Mea. Sci. Technol. 17 1052

    [12]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [13]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.:Conden. Matter 12 8837

    [14]

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160(in Chinese)[梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达2012纳米技术与精密工程 10 160]

    [15]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武2013物理学报 62 217201]

    [16]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [17]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017202 (in Chinese)[熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰2015物理学报 64 017102]

    [18]

    Markov P, Ryckman J D, Marvel R E, Hallman K A, Haglund R F, Weiss S M 2013 CLEO 2013 CTu2F.7

    [19]

    Schuler T, Aegerter M A 1999 Thin Solid Films 351 125

    [20]

    Perkins J D, Cueto J A D, Alleman J L, Warmsinghb C, Keyesa B M, Gedvilasa L M, Parillaa P A, Toa B, Readeyb D W, Ginleya D S 2002 Thin Solid Films 411 152

    [21]

    Yuan W R, Li Y, Wang X H, Zheng H Z, Chen S J, Chen J K, Sun Y, Tang J Y, Liu F, Hao R L, Fang B Y, Xiao H 2014 Acta Phys. Sin. 63 218101 (in Chinese)[袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒2014物理学报 63 218101]

    [22]

    Xiao H, Li Y, Yuan W R, Fang B Y, Wang X H, Hao R L, Wu Z Y, Xu T T, Jiang W, Chen P Z 2016 Infrared Phys. Technol. 76 580

  • [1] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [2] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [3] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [4] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [5] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质. 物理学报, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [6] 张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒. 掺钨VO2薄膜的电致相变特性. 物理学报, 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [7] 王雅琴, 姚刚, 黄子健, 黄鹰. 用于红外激光防护的高开关率VO2薄膜. 物理学报, 2016, 65(5): 057102. doi: 10.7498/aps.65.057102
    [8] 郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒. 基于FTO/VO2/FTO结构的VO2薄膜电压诱导相变光调制特性. 物理学报, 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [9] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [10] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型. 物理学报, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [11] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [12] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型. 物理学报, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [13] 李妤晨, 张鹤鸣, 张玉明, 胡辉勇, 徐小波, 秦珊珊, 王冠宇. 新型高速半导体器件IMOS阈值电压解析模型. 物理学报, 2012, 61(4): 047303. doi: 10.7498/aps.61.047303
    [14] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型. 物理学报, 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [15] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型. 物理学报, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [16] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [17] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型. 物理学报, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [18] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究. 物理学报, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [19] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型. 物理学报, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
计量
  • 文章访问数:  4888
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-25
  • 修回日期:  2016-08-20
  • 刊出日期:  2016-12-05

/

返回文章
返回