搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

筒内高功率脉冲磁控放电的电磁控制与优化

崔岁寒 吴忠振 肖舒 刘亮亮 郑博聪 林海 傅劲裕 田修波 朱剑豪 谭文长 潘锋

引用本文:
Citation:

筒内高功率脉冲磁控放电的电磁控制与优化

崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋

Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source

Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng
PDF
导出引用
  • 高功率脉冲磁控溅射(HiPIMS)技术被提出以来就受到广泛关注,其较高的溅射材料离化率结合适当的电磁控制,可产生高致密度、高结合力和高综合性能的涂层,但其沉积速率低、放电不稳定、溅射材料离化率差异较大.我们设计了一种筒形溅射源,通过对结构的设计优化,利用类空心阴极放电效应,使问题得到解决.然而其靶面切向磁场不均匀,电子逃逸严重,进而造成等离子体密度偏低,且放电不均匀.本文通过对其放电和等离子体分布进行仿真,提出电场阻挡和磁铁补偿两种方案,研究了不同电场控制条件下的放电行为和等离子体分布.结果表明:增加电子阻挡屏极可以生成势阱,从而有效抑制电子从边缘的逸出;优化后的磁铁补偿可以显著提高靶面横向磁场的均匀性及靶面利用率.两种方案同时作用时,HiPIMS放电刻蚀环面积更大、且更加均匀.
    High-power impulse magnetron sputtering (HiPIMS), a new physical vapor deposition technique which combines the advantages of the high ionization rates of the sputtered materials and control of electromagnetism, has been widely used to deposit high-performance coatings with a large density and high adhesion. However, HiPIMS has some intrinsic disadvantages such as the low deposition rate, unstable discharge, and different ionization rates for different materials thereby hampering wider industrial adoption. We have recently designed an optimized cylindrical source based on the hollow cathode effect to circumvent the aforementioned limitations. However, during the operation of the cylindrical source, the discharge is inhomogeneous and the etching stripes are nonuniform. In order to determine the underlying mechanism and optimize the electromagnetic control, the discharge in the HiPIMS cylindrical source is simulated. The tangential magnetic field distribution on the target surface of the cylindrical sputtering source is inhomogeneous and electron runaway is serious, resulting in a relatively low plasma density. Two solutions are proposed to improve the situations. The first one is electrical improvement by installing an electron blocking plate, and the second one is magnetic improvement by adding compensating magnets. Our simulation results of the first method show that a potential well is produced by the electron blocking plate to suppress electron runaway and the plasma density is improved significantly, especially around the central cross-section of the cylindrical sputtering source. The discharge becomes homogeneous, and the etching stripes are uniform albeit not full enough. The second method of magnetic improvement significantly improves the homogeneity of the tangential magnetic field distribution on the target surface and the target utilization rate. After adding the optimized compensating magnets, the shape of the effective area (the value of the tangential magnetic field in a range of 25-50 mT) on the target surface can be controlled and made zonal. The target utilization rate increases to over 80% from 60%. In order to obtain the optimal conditions, the two techniques are combined. A larger and more homogeneous etching ring is observed by adopting both the electrical and magnetic improvements as predicted and explained by the simulation results. It can be concluded that the combination of the two improvement techniques can improve and optimize the HiPIMS cylindrical source.
      通信作者: 吴忠振, wuzz@pkusz.edu.cn
    • 基金项目: 国家材料基因组计划(批准号:2016YFB0700600)、国家自然科学基金(批准号:51301004)、深圳科技研究基金(批准号:JCYJ20140903102215536,JCYJ20150828093127698)和香港城市大学应用研究基金(批准号:9667122)资助的课题.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the National Materials Genome Project, China (Grant No. 2016YFB0700600), the Natural Science Foundation of China (Grant No. 51301004), the Shenzhen Science and Technology Research Grant, China (Grant Nos. JCYJ20140903102215536, JCYJ20150828093127698), and the City University of Hong Kong Applied Research Grant (ARG), China (Grant No. 9667122).
    [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201 (in Chinese) [吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 物理学报 63 175201]

    [3]

    Wu Z Z, Tian X B, Pan F, Ricky K Y Fu, Chu P K 2014 Acta Phys. Sin. 63 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 63 185207]

    [4]

    Ehiasarian A P, Munz W D, Hultman L, Helmersson U, Petrov I 2003 Surf. Coat. Technol. 163-164 267

    [5]

    Ehiasarian A P, Wen J G, Petrov I J 2007 Appl. Phys. 101 054301

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [8]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [9]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [10]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, China, October 8-12, 2011 p21

    [11]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [12]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [13]

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528 (in Chinese) [赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 物理学报 50 1528]

    [14]

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202 (in Chinese) [肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202]

    [15]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695.1 (in Chinese) [吴忠振, 潘锋, 肖舒2014 中国专利 201410268695.1]

    [16]

    Guan K Z, Li Y Q 1986 Vaccum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [17]

    Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1 (in Chinese) [王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1]

    [18]

    Fu Q X 2013 M. S. Thesis (Xi An: Xi Dian University) (in Chinese) [付强新2013 硕士学位论文 (西安: 西安电子科技大学)]

    [19]

    Zhang W R 2013 M. S. Thesis (Da Lian: Dalian University of Technology) (in Chinese) [张文茹 2013 硕士学位论文 (大连: 大连理工大学)]

    [20]

    Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

  • [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201 (in Chinese) [吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 物理学报 63 175201]

    [3]

    Wu Z Z, Tian X B, Pan F, Ricky K Y Fu, Chu P K 2014 Acta Phys. Sin. 63 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 63 185207]

    [4]

    Ehiasarian A P, Munz W D, Hultman L, Helmersson U, Petrov I 2003 Surf. Coat. Technol. 163-164 267

    [5]

    Ehiasarian A P, Wen J G, Petrov I J 2007 Appl. Phys. 101 054301

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [8]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [9]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [10]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, China, October 8-12, 2011 p21

    [11]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [12]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [13]

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528 (in Chinese) [赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 物理学报 50 1528]

    [14]

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202 (in Chinese) [肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202]

    [15]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695.1 (in Chinese) [吴忠振, 潘锋, 肖舒2014 中国专利 201410268695.1]

    [16]

    Guan K Z, Li Y Q 1986 Vaccum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [17]

    Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1 (in Chinese) [王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1]

    [18]

    Fu Q X 2013 M. S. Thesis (Xi An: Xi Dian University) (in Chinese) [付强新2013 硕士学位论文 (西安: 西安电子科技大学)]

    [19]

    Zhang W R 2013 M. S. Thesis (Da Lian: Dalian University of Technology) (in Chinese) [张文茹 2013 硕士学位论文 (大连: 大连理工大学)]

    [20]

    Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

  • [1] 朱彦熔, 常正实. 脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响. 物理学报, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [2] 朱彦熔, 常正实. 脉冲电压上升沿对He APPJ管内放电发展演化特性的影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210470
    [3] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性. 物理学报, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [4] 李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 筒形溅射阴极的磁场优化及其高功率放电特性研究. 物理学报, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [5] 高书涵, 王绪成, 张远涛. 脉冲调制条件下介质阻挡特高频放电特性的数值模拟. 物理学报, 2020, 69(11): 115204. doi: 10.7498/aps.69.20191853
    [6] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [7] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [8] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [9] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [10] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [11] 吴忠振, 田修波, 潘锋, Ricky K. Y. Fu, 朱剑豪. 高压耦合高功率脉冲磁控溅射的增强放电效应. 物理学报, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [12] 吴忠振, 田修波, 李春伟, Ricky K. Y. Fu, 潘锋, 朱剑豪. 高功率脉冲磁控溅射的阶段性放电特征. 物理学报, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [13] 车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引. 亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究. 物理学报, 2013, 62(22): 224702. doi: 10.7498/aps.62.224702
    [14] 江强, 毛秀娟, 周细应, 苌文龙, 邵佳佳, 陈明. 外加磁场对磁控溅射制备氮化硅陷光薄膜的影响. 物理学报, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [15] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [16] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究. 物理学报, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [17] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性. 物理学报, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [18] 韩 亮, 赵玉清, 张海波. 非平衡磁控溅射系统磁场的半解析法. 物理学报, 2008, 57(2): 996-1000. doi: 10.7498/aps.57.996
    [19] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [20] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王 逍, 郭 仪, 袁晓东, 彭志涛, 唐晓东. 高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究. 物理学报, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
计量
  • 文章访问数:  10375
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-04
  • 修回日期:  2017-02-06
  • 刊出日期:  2017-05-05

/

返回文章
返回