搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子碰撞Ne和类Ne离子电离的三重微分截面理论研究

周丽霞 张燕 燕友果

引用本文:
Citation:

电子碰撞Ne和类Ne离子电离的三重微分截面理论研究

周丽霞, 张燕, 燕友果

Theoretical studies of triple differential cross sections for electron impact ionization with neon and neon-like ions

Zhou Li-Xia, Zhang Yan, Yan You-Guo
PDF
导出引用
  • 采用扭曲波玻恩近似理论计算了共面对称几何条件下类Ne离子2p轨道电子在不同出射电子能量下的(e,2e)反应三重微分截面,出射电子能量分别为3,5,7.5,10,15,20,30和50 eV.计算结果表明,随着出射电子能量的增大和核电荷数Z的增大,三重微分截面的幅度逐渐减小.除Ne以外,对其他离子,在出射电子角度为150附近出现了一个新的结构,对比不同出射电子能量时的(e,2e)反应三重微分截面,发现这个结构的幅度随着出射电子的能量先增大后减小,文中用一种两次两体碰撞过程对这些现象进行了解释.
    Electron impact single ionization of atom or molecule, the so-called (e, 2e) reaction, is one of the basic collision processes between electron and atom or molecule. The triple differential cross section (TDCS) of the collision process can provide important data for gas discharge, celestial bodies, and electron-target interaction. A large number of experimental and theoretical studies of (e, 2e) reactions on atom targets have been carried out under different geometric conditions, such as coplanar symmetric geometry, coplanar asymmetric geometry, non-coplanar symmetric geometry, etc. However, few experimental researches of (e, 2e) reaction on ion target have been reported due to the low target source density. The difference in TDCS between atomic target and ionic target can provide more information about the (e, 2e) reaction. Thus the relevant researches on ionic targets are of significance. In this paper, adopting distorted-wave Born approximation (DWBA), the TDCSs of 2 p orbital for Ne and neon-like ions are calculated at different outgoing electron energies (3, 5, 7.5, 10, 15, 20, 30, and 50 eV) under the condition of coplanar symmetric geometry. The results indicate that the TDCSs decrease with the increase of outgoing electron energy and nuclear charge number Z. Except Ne, the TDCSs of other ions present a new structure at an outgoing electron angle of about 150. The intensity of the new structure increases with the increase of the outgoing electron energy in a region of 10-20 eV, while it decreases with the increase of the outgoing electron energy in a region of 20-50 eV. We propose a kind of double-binary collision process to rationalize the new structure. The incident electron ionizes the target atom and the following two outgoing electrons exit in the directions symmetric with respect to the incident electron direction. Then these two outgoing electrons are elastically scattered by the target ions and emitted in the backward directions. In order to confirm this explanation, we compare our calculation results with the previously reported experimental and theoretical results of elastic scattering between electron and Ne. Previous research results show that the elastic scattering cross section has a large intensity at a scattering angle of~150, and it reaches the largest intensity at an outgoing electron energy of 20 eV. These structural features are consistent with our calculated results, implying that our proposed process is reasonable.
      通信作者: 周丽霞, zhoulx@upc.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号:15CX05059A)资助的课题.
      Corresponding author: Zhou Li-Xia, zhoulx@upc.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central University, China (Grant No. 15CX05059A).
    [1]

    Brauner M, Briggs J S, Klar H 1989 J. Phys. B:At. Mol. Opt. Phys. 22 2265

    [2]

    Chen Z J, Ni Z X, Shi Q C, Xu K Z 1998 J. Phys. B:At. Mol. Opt. Phys. 31 3803

    [3]

    Roder J, Rasch J, Jung K, Whelan Colm T, Ehrhardt H, Allan R J, Walters H R J 1996 Phys. Rev. A 53 225

    [4]

    Bray I, Fursa D V, Kheifets A, Stelbovics A T 2002 J. Phys. B:At. Mol. Opt. Phys. 35 R117

    [5]

    Bray I, Fursa D V, Roder J, Ehrhardt H 1997 J. Phys. B:At. Mol. Opt. Phys. 30 L101

    [6]

    Naja A, Staicu Casagrande E M, Lahmam-Bennani A, Nekkab M, Mezdari F, Joulakian B, Chuluunbaatar O, Madison D H J 2007 J. Phys. B:At. Mol. Opt. Phys. 40 3775

    [7]

    Stevenson M A, Lohmann B 2008 Phys. Rev. A 77 032708

    [8]

    Haynes M A, Lohmann B, Prideaux A, Madison D H 2003 J. Phys. B:At. Mol. Opt. Phys. 36 811

    [9]

    Panajotovic R, Lower J, Weigold E 2006 Phys. Rev. A 73 052701

    [10]

    Ren X G, Ning C G, Deng J K, Su G L, Zhang S F, Huang Y R 2006 Phys. Rev. A 73 042714

    [11]

    Murray A J 2005 Phys. Rev. A 72 062711

    [12]

    Shi Q C, Chen Z J, Chen J, Xu K Z 1997 J. Phys. B:At. Mol. Opt. Phys. 30 2859

    [13]

    Khajuria Y, Chen L Q, Chen X J, Xu K Z 2002 J. Phys. B:At. Mol. Opt. Phys. 35 93

    [14]

    Chen L Q, Chen X J, Wu X J, Shan X, Xu K Z 2005 J. Phys. B:At. Mol. Opt. Phys. 38 1371

    [15]

    Khajuria Y, Tripathi D N 1999 Phys. Rev. A 59 1197

    [16]

    Zhou L X, Yan Y G 2014 Chin. Phys. B 23 053402

    [17]

    Zhou L X, Yan Y G 2012 Chin. Phys. B 21 093401

    [18]

    McCarthy I E 1995 Aust. J. Phys. 48 1

    [19]

    Gianturco F A, Scialla S 1987 J. Phys. B:At. Mol. Phys. 20 3171

    [20]

    Ward S J, Macek J H 1994 Phys. Rev. A 49 1049

    [21]

    Yin Y J 1988 Physical Chemistry Concise Manuals (Beijing:Higher Education Press) p364(in Chinese)[印永嘉1988物理化学简明手册(北京:高等教育出版社)第364页]

    [22]

    Rioualt S, Pochat A, Gelebart F, Allan R J, Whelan C T, Walters H R J L 1995 J. Phys. B:At. Mol. Phys. 28 5317

    [23]

    Fon W C, Berrington K A 1981 J. Phys. B:At. Mol. Phys. 14 323

  • [1]

    Brauner M, Briggs J S, Klar H 1989 J. Phys. B:At. Mol. Opt. Phys. 22 2265

    [2]

    Chen Z J, Ni Z X, Shi Q C, Xu K Z 1998 J. Phys. B:At. Mol. Opt. Phys. 31 3803

    [3]

    Roder J, Rasch J, Jung K, Whelan Colm T, Ehrhardt H, Allan R J, Walters H R J 1996 Phys. Rev. A 53 225

    [4]

    Bray I, Fursa D V, Kheifets A, Stelbovics A T 2002 J. Phys. B:At. Mol. Opt. Phys. 35 R117

    [5]

    Bray I, Fursa D V, Roder J, Ehrhardt H 1997 J. Phys. B:At. Mol. Opt. Phys. 30 L101

    [6]

    Naja A, Staicu Casagrande E M, Lahmam-Bennani A, Nekkab M, Mezdari F, Joulakian B, Chuluunbaatar O, Madison D H J 2007 J. Phys. B:At. Mol. Opt. Phys. 40 3775

    [7]

    Stevenson M A, Lohmann B 2008 Phys. Rev. A 77 032708

    [8]

    Haynes M A, Lohmann B, Prideaux A, Madison D H 2003 J. Phys. B:At. Mol. Opt. Phys. 36 811

    [9]

    Panajotovic R, Lower J, Weigold E 2006 Phys. Rev. A 73 052701

    [10]

    Ren X G, Ning C G, Deng J K, Su G L, Zhang S F, Huang Y R 2006 Phys. Rev. A 73 042714

    [11]

    Murray A J 2005 Phys. Rev. A 72 062711

    [12]

    Shi Q C, Chen Z J, Chen J, Xu K Z 1997 J. Phys. B:At. Mol. Opt. Phys. 30 2859

    [13]

    Khajuria Y, Chen L Q, Chen X J, Xu K Z 2002 J. Phys. B:At. Mol. Opt. Phys. 35 93

    [14]

    Chen L Q, Chen X J, Wu X J, Shan X, Xu K Z 2005 J. Phys. B:At. Mol. Opt. Phys. 38 1371

    [15]

    Khajuria Y, Tripathi D N 1999 Phys. Rev. A 59 1197

    [16]

    Zhou L X, Yan Y G 2014 Chin. Phys. B 23 053402

    [17]

    Zhou L X, Yan Y G 2012 Chin. Phys. B 21 093401

    [18]

    McCarthy I E 1995 Aust. J. Phys. 48 1

    [19]

    Gianturco F A, Scialla S 1987 J. Phys. B:At. Mol. Phys. 20 3171

    [20]

    Ward S J, Macek J H 1994 Phys. Rev. A 49 1049

    [21]

    Yin Y J 1988 Physical Chemistry Concise Manuals (Beijing:Higher Education Press) p364(in Chinese)[印永嘉1988物理化学简明手册(北京:高等教育出版社)第364页]

    [22]

    Rioualt S, Pochat A, Gelebart F, Allan R J, Whelan C T, Walters H R J L 1995 J. Phys. B:At. Mol. Phys. 28 5317

    [23]

    Fon W C, Berrington K A 1981 J. Phys. B:At. Mol. Phys. 14 323

  • [1] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响. 物理学报, 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [2] 薛思敏. (e,2e)反应中冲量近似的理论研究. 物理学报, 2013, 62(16): 163402. doi: 10.7498/aps.62.163402
    [3] 张汉君, 单旭, 徐春凯, 陈向军. 共面不对称条件下低能电子碰撞电离Ar(3p)的三重微分截面. 物理学报, 2013, 62(18): 183401. doi: 10.7498/aps.62.183401
    [4] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 袁好. 氢原子(e, 2e) 反应中二重微分截面的理论研究. 物理学报, 2012, 61(13): 133401. doi: 10.7498/aps.61.133401
    [5] 陈展斌. 截面依赖动量转移条件下屏蔽效应的理论研究. 物理学报, 2012, 61(4): 043403. doi: 10.7498/aps.61.043403
    [6] 陈展斌, 刘丽娟, 董晨钟. 64.6 eV电子碰撞电离氦原子(e, 2e)反应的理论研究. 物理学报, 2012, 61(14): 143401. doi: 10.7498/aps.61.143401
    [7] 孙世艳, 贾祥富, 苗向阳, 李霞, 马晓艳. 共面双对称几何条件下电子碰撞Na原子单电离的三重微分截面. 物理学报, 2012, 61(9): 093402. doi: 10.7498/aps.61.093402
    [8] 周丽霞, 燕友果. 共面不对称条件下Ag+(4p,4d)(e,2e)反应三重微分截面的理论研究. 物理学报, 2012, 61(4): 043401. doi: 10.7498/aps.61.043401
    [9] 刘昆, 宁传刚, 石砳磊, 苗雨润, 邓景康. 探测二茂铁外价轨道(e,2e)反应中的扭曲波效应. 物理学报, 2011, 60(2): 023402. doi: 10.7498/aps.60.023402
    [10] 陈展斌, 杨欢, 吴兴举, 张穗萌. 非共面索末菲参量对三重微分截面的影响. 物理学报, 2011, 60(6): 063402. doi: 10.7498/aps.60.063402
    [11] 高瑞军, 葛自明. 共面不对称条件下Ar原子(e, 2e)反应的三重微分截面. 物理学报, 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [12] 胡小颖, 周雅君. 光学势在(e, 2e)反应动力学过程的作用. 物理学报, 2010, 59(4): 2423-2427. doi: 10.7498/aps.59.2423
    [13] 周丽霞, 燕友果. 共面不对称条件下He和Ar原子(e, 2e)反应过程中的极化效应和后碰撞相互作用. 物理学报, 2008, 57(12): 7619-7622. doi: 10.7498/aps.57.7619
    [14] 张程华, 邱 巍, 辛俊丽, 牛英煜, 王晓伟, 王京阳. 电子碰撞下氢原子单离化反应三重微分散射截面的计算. 物理学报, 2003, 52(10): 2449-2452. doi: 10.7498/aps.52.2449
    [15] 葛自明, 周雅君, 吕志伟, 王治文. 电子碰撞原子(e,2e)反应的复极化势. 物理学报, 2002, 51(3): 519-523. doi: 10.7498/aps.51.519
    [16] 张穗萌. (e,2e)反应中碰撞机理的理论研究. 物理学报, 2000, 49(4): 690-695. doi: 10.7498/aps.49.690
    [17] 段 斌, 白在桥, 顾 雁. 一维库仑三体系统中电子碰撞导致的(e,2e)电离截面. 物理学报, 2000, 49(8): 1428-1434. doi: 10.7498/aps.49.1428
    [18] 贾祥富, 杨 威. Li+低能(e,2e)反应角分布. 物理学报, 1998, 47(11): 1783-1789. doi: 10.7498/aps.47.1783
    [19] 贾祥富, 施启存, 陈长进, 陈 激, 徐克尊. 低能电子碰撞He+(e,2e)反应绝对三重微分截面的理论研究. 物理学报, 1998, 47(3): 411-418. doi: 10.7498/aps.47.411
    [20] 钱青, 刘强, 徐向东, 田嘉禾, 陈学俊. 复杂原子的(e,2e)碰撞理论. 物理学报, 1992, 41(2): 233-237. doi: 10.7498/aps.41.233
计量
  • 文章访问数:  4335
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-28
  • 修回日期:  2017-07-13
  • 刊出日期:  2017-10-05

/

返回文章
返回