搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rydberg原子的微波电磁感应透明-Autler-Townes光谱

樊佳蓓 焦月春 郝丽萍 薛咏梅 赵建明 贾锁堂

引用本文:
Citation:

Rydberg原子的微波电磁感应透明-Autler-Townes光谱

樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂

Microwave electromagnetically induced transparency and Aulter-Townes spectrum of cesium Rydberg atom

Fan Jia-Bei, Jiao Yue-Chun, Hao Li-Ping, Xue Yong-Mei, Zhao Jian-Ming, Jia Suo-Tang
PDF
导出引用
  • 主要研究了室温下微波场缀饰的铯Rydberg原子的电磁感应透明-Autler-Townes (EIT-AT)光谱.首先,以铯原子6S1/2 6P3/2 50S1/2形成阶梯型三能级系统,利用强耦合光作用于6P3/2 50S1/2的Rydberg跃迁,弱探测光耦合基态跃迁6S1/2 6P3/2并探测由耦合光形成的电磁感应透明(EIT)效应.然后,以频率为30.582 GHz的微波电场耦合相邻的Rydberg能级50S1/2 50P1/2产生微波AT分裂.利用Rydberg EIT探测微波耦合相邻Rydberg能级产生的AT分裂,形成EIT-AT光谱,进而实现微波电场的测量.当微波场的强度增加到一定值时,EIT-AT光谱表现为多峰光谱结构.分析EIT-AT多峰光谱的成因,发现这主要是由场的不均匀性导致的,一定的EIT-AT光谱特征对应于特定的非均匀场分布.研究表明,利用Rydberg EIT-AT光谱可以实现微波电场的测量,利用其光谱特征可实现微波场的实时监测,进而提出了一种提高微波场空间分辨率的测量方法.
    We present an electromagnetically induced transparency and Aulter-Townes (EIT-AT) spectrum of a Rydberg three-level atom that is dressed with a microwave field in a room-temperature cesium cell. The EIT is a quantum coherent effect produced by the interaction of atoms with electromagnetic waves, which leads to the decrease of the absorption for a weak resonant probe laser. AT splitting refers to the phenomenon, that the absorption line splits when an electromagnetic field that is in resonance or near resonance acts on the transition of atoms. Rydberg atoms are extremely sensitive to an external electric field due to their large polarizabilities and microwave transition dipole moments, which can be used to measure the external field. In this work, a Rydberg three-level EIT is used to detect Rydberg atom and AT splitting induced by the microwave field. Cesium levels 6S1/2, 6P3/2 and 50S1/2 constitute a Rydberg three-level system, in which a weak probe laser locking to the transition from 6S1/2 to 6P3/2 couples ground-state transition and the strong coupling laser resonates on the Rydberg transition from 6P2/3 to 50S1/2. The two Rydberg levels 50S1/2 and 50P1/2 are coupled with the microwave field at a frequency of 30.852 GHz, leading to the AT splitting of EIT line and forming an EIT-AT spectrum, which is used to measure the electric field amplitude of microwave. In order to further study the EIT-AT splitting characteristics of the Rydberg levels, we carry out a series of measurements by changing the microwave field. The experimental results show a broadened EIT-AT signal for the weak field range and the four-peak spectrum for the strong field, which is attributed to the inhomogeneity of the microwave field. The microwave in cesium cell, emitted by a function generator, shows inhomogeneous behavior such that the atoms interacting with the laser field experience the different fields, leading to the line broadened and multi-peak EIT-AT spectra. For the microwave transition of nS1/2-nP1/2 in this paper, a pair of EIT-AT lines should be obtained for an electric field value. The broadening of the EIT-AT spectrum and the multi-peak structure here are due to the inhomogeneity of the microwave field measurement. We propose a method to increase the spatial resolution by reducing the length of cesium cell. The result in this work provides a method of measuring the field amplitude and monitoring the distribution of microwave electric field, meanwhile the spatial resolution of the measurements can be improved by reducing the size of the cell.
      通信作者: 赵建明, zhaojm@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0304203)、国家自然科学基金(批准号:61475090,61675123,61775124)、长江学者和创新团队发展计划(批准号:IRT13076)、国家自然科学基金重点项目(批准号:11434007)和山西省1331工程重点学科建设计划资助的课题.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0304203), the National Nature Science Foundation of China (Grant Nos. 61475090, 61675123, 61775124), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007), and the Fund for Shanxi 1331 Project Key Subjects Construction.
    [1]

    Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55

    [2]

    Harris S E 1997 Phys. Today 50 36

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [4]

    Scully M O, Fleischhauer M 1992 Phys. Rev. Lett. 69 1360

    [5]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [6]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [7]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [8]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [9]

    Scully M O, Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) p205

    [10]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [11]

    Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p11

    [12]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208

    [13]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [14]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020

    [15]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [16]

    Gordon J A, Holloway C L, Schwarzkopf A, Ander-son D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [17]

    Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [18]

    Bohlouli-Zanjani P, Petrus J A, Martin J D 2007 Phys. Rev. Lett. 98 203005

    [19]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208

    [20]

    Lukin M D, Flischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [21]

    Galindo A, Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347

    [22]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [23]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [24]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [25]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [26]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [27]

    Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U, Adams C S 2009 Appl. Phys. Lett. 94 071107

    [28]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

  • [1]

    Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55

    [2]

    Harris S E 1997 Phys. Today 50 36

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [4]

    Scully M O, Fleischhauer M 1992 Phys. Rev. Lett. 69 1360

    [5]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [6]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [7]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [8]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [9]

    Scully M O, Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) p205

    [10]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [11]

    Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p11

    [12]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208

    [13]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [14]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020

    [15]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [16]

    Gordon J A, Holloway C L, Schwarzkopf A, Ander-son D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [17]

    Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [18]

    Bohlouli-Zanjani P, Petrus J A, Martin J D 2007 Phys. Rev. Lett. 98 203005

    [19]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208

    [20]

    Lukin M D, Flischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [21]

    Galindo A, Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347

    [22]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [23]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [24]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [25]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [26]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [27]

    Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U, Adams C S 2009 Appl. Phys. Lett. 94 071107

    [28]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

  • [1] 刘建基, 刘甲琛, 张国权. 基于电磁感应透明效应的光学图像加减. 物理学报, 2023, 72(9): 094201. doi: 10.7498/aps.72.20221560
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [4] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱. 物理学报, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [5] 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱. 物理学报, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
    [6] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211458
    [7] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [8] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [9] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂. 物理学报, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [10] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [11] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [12] 杨丽君, 马腾, 孙克家, 冯晓敏. 微波场作用下三能级原子系统的无反转光放大. 物理学报, 2015, 64(6): 064205. doi: 10.7498/aps.64.064205
    [13] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅. 物理学报, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [14] 李晓莉, 张连水, 孙江, 冯晓敏. 微波驱动精细结构能级跃迁引起的电磁诱导负折射效应. 物理学报, 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [15] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [16] 杨丽君, 马立金, 吕东启, 张连水. 四能级系统中相位控制电磁诱导透明研究. 物理学报, 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 杨苏辉, 张汉壮, 国秀珍, 王 冬, 高锦岳. 激光场的线宽对双光子电磁感应光透明及共振吸收增强的影响. 物理学报, 1998, 47(6): 931-937. doi: 10.7498/aps.47.931
    [20] 郭光灿, 曹卓良. 微波场驱动三能级原子系统的自感应透明现象. 物理学报, 1993, 42(10): 1600-1607. doi: 10.7498/aps.42.1600
计量
  • 文章访问数:  7458
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-01-09
  • 刊出日期:  2018-05-05

/

返回文章
返回