搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究

姜炜曼 李玉同 张喆 朱保君 张翌航 袁大伟 魏会冈 梁贵云 韩波 刘畅 原晓霞 华能 朱宝强 朱健强 方志恒 王琛 黄秀光 张杰

引用本文:
Citation:

纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究

姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰

Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions

Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie
PDF
HTML
导出引用
  • 在强激光与等离子体的相互作用中, 通常能够产生时间尺度长达百纳秒量级的微波辐射, 形成的复杂电磁环境会干扰或损坏机械电子设备, 并给物理过程的准确认识与表征带来困难. 然而, 目前对于微波辐射的产生机制的研究还不够系统和完善. 本文通过系统地改变纳秒激光与等离子体作用过程中入射的激光能量以改变入射激光强度, 发现微波辐射强度随激光强度非单调变化. 在较低的激光强度下, 辐射强度随激光强度的增加先增加后减小, 辐射场时间波形呈现连续振荡的特征, 辐射频谱包含低于和高于0.3 GHz两部分分量; 在较高的激光强度下, 辐射强度随激光强度的增加而增加, 辐射场时间波形表现为数十纳秒的单极性辐射, 辐射频谱主要包括0.3 GHz以下的分量. 分析表明, 导致微波波形和频谱差别的原因是辐射机制发生了变化. 在较低的激光强度下, 微波辐射由偶极辐射和靶上电子束向真空出射共同作用产生, 其中偶极辐射占主导; 在较高的激光强度下, 微波辐射主要由靶上电子束向真空出射产生. 研究结果对于理解纳秒激光与等离子体相互作用过程中的微波辐射机制具有比较重要的意义, 同时也为借助微波辐射诊断激光与等离子体相互作用过程中的逃逸电子、靶面鞘层场等问题提供了参考.
    Microwave radiation in several gigahertz frequency band is a common phenomenon in laser-plasma interactions. It can last hundreds of nanoseconds and cause huge electromagnetic pulse disturbances to electrical devices in experiments. It has been found that the microwave radiation might originate from the oscillation of charged chambers, the return current on target holders, the dipole radiation, the quadrupole radiation, and the electron bunch emitted from the plasma to the vacuum. The microwave radiation waveform, frequency spectrum, and intensity depend on many factors such as laser pulse, target, and chamber parameter. To distinguish the microwave radiation mechanisms, the influence of the experimental parameters on the radiation characteristics should be investigated systematically. In this paper we investigate the microwave radiation influenced by the laser intensity in nanosecond laser-plasma interactions. It is found that the microwave radiation intensity varies nonmonotonically with the laser intensity. For the lower laser intensity, the radiation intensity first increases and then decreases with laser intensity increasing, the radiation field continuously oscillates in tens of nanoseconds, and the radiation spectrum contains two components below and above 0.3 GHz, respectively. For the higher laser intensity, the radiation intensity increases with the laser intensity increasing, the radiation field has a unipolar radiation lasting tens of nanoseconds, and the radiation spectrum mainly includes the component below 0.3 GHz. The waveform and spectrum analysis show that these phenomena are due to the difference of the radiation mechanisms at different laser intensities. The frequency component below and above 0.3 GHz are induced by the electron bunch emitted from the plasma to the vacuum and the dipole radiation respectively. At low laser intensity, both the dipole radiation and the electron bunch emitted from the plasma contribute to the microwave radiation. At high laser intensity, the microwave radiation is mainly produced by the electron beam emitted from the plasma to the vacuum. This work is significant for understanding the microwave radiation mechanisms in nanosecond laser-plasma interactions, and implies the potential to provide a reference to the diagnosing of the escape electrons and the sheath field on the target surface by the microwave radiation in laser-plasma interaction.
      通信作者: 李玉同, ytli@iphy.ac.cn ; 张喆, zzhang@iphy.ac.cn
    • 基金项目: 科学挑战计划(批准号: TZ2016005)、中国科学院国际合作局对外合作重点项目(批准号: 112111KYSB20160015)、国家自然科学基金(批准号: 11520101003, 11827807, 11861121001)和中国科学院战略先导专项(批准号: XDB16010000)资助的课题.
      Corresponding author: Li Yu-Tong, ytli@iphy.ac.cn ; Zhang Zhe, zzhang@iphy.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the CAS-JSPS Joint Research Program (External Cooperation Program of the BIC, Chinese Academy of Sciences) (Grant No. 112111KYSB20160015), the National Natural Science Foundation of China (Grant Nos. 11520101003, 11827807, 11861121001), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16010000).
    [1]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, Wonterghem V 2017 Matter Radiat. Extremes 2 37Google Scholar

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945Google Scholar

    [3]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [4]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photon. 6 308Google Scholar

    [5]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005Google Scholar

    [6]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby, D R, McKenna P, Brenner C M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. USA 116 3994Google Scholar

    [7]

    Robinson T S, Consoli F, Giltrap S, Eardley S J, Hicks G S, Ditter E J, Ettlinger O, Stuart N H, Notley M, de Angelis R, Najmudin Z, Smith R A 2017 Sci. Rep. 7 983Google Scholar

    [8]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 10Google Scholar

    [9]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457Google Scholar

    [10]

    Gerdin G, Tanis M J, Venneri F 1986 Plasma Phys. Control. Fusion 28 527Google Scholar

    [11]

    Mead M J, Neely D, Gauoin J, Heathcote R, Patel P 2004 Rev. Sci. Instrum. 75 4225Google Scholar

    [12]

    Raimbourg J 2004 Rev. Sci. Instrum. 75 4234Google Scholar

    [13]

    Felber F S 2005 Appl. Phys. Lett. 86 231501Google Scholar

    [14]

    Remo J L, Adams R G, Jones M C 2007 Appl. Opt. 46 6166Google Scholar

    [15]

    Miragliotta J, Brawley B, Sailor C, Spicer J B, Spicer J W M 2011 Proc. SPIE 8037 80370N-1Google Scholar

    [16]

    Chen Z Y, Li J F, Yu Y, Wang J X, Li X Y, Peng Q X, Zhu W J 2012 Phys. Plasmas 19 113116Google Scholar

    [17]

    戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全 2017 物理学报 66 185201Google Scholar

    Dai Y J, Song X W, Gao X, Wang X S, Lin J Q 2017 Acta Phys. Sin. 66 185201Google Scholar

    [18]

    Englesbe A, Elle J, Reid R, Lucero A, Pohle H, Domonkos M, Kalmykov S, Krushelnick K, Schmitt-Sody A 2018 Opt. Lett. 43 4953

    [19]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.: Conf. Ser. 244 032001Google Scholar

    [20]

    Tao Y, Yang M, Wang C, Yang W, Li Y, Liu S, Jiang S, Ding Y, Xiao S 2016 Photon. Sens. 6 249Google Scholar

    [21]

    Bradford P, Woolsey N C, Scott G G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P J R, Montgomery E, Musgrave I, Oliveira P, Rusby D R, Spindloe C, Summers B, Zemaityte E, Zhang Z, Li Y, McKenna P, Neely D 2018 High Power Laser Sci. Eng. 6 e21Google Scholar

    [22]

    Brown C G, Ayers J, Felker B, Ferguson W, Holder J P, Nagel S R, Piston K W, Simanovskaia N, Throop A L, Chung M, Hilsabeck T 2012 Rev. Sci. Instrum. 83 10D729Google Scholar

    [23]

    Brown C G, Clancy T J, Eder D C, Ferguson W, Throop A L 2013 EPJ Web of Conferences 59 08012Google Scholar

    [24]

    Consoli F, de Angelis R, de Marco M, Krasa J, Cikhardt J, Pfeifer M, Margarone D, Klir D, Dudzak R 2018 Plasma Phys. Control. Fusion 60 105006Google Scholar

    [25]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Plasma Scr. 83 055503

    [26]

    Consoli F, de Angelis R, Duvillaret L, Andreoli P L, Cipriani M, Cristofari G, Di Giorgio G, Ingenito F, Verona C 2016 Sci. Rep. 6 27889Google Scholar

    [27]

    Krása J, de Marco M, Cikhardt J, Pfeifer M, Velyhan A, Klír D, Řezáč K, Limpouch J, Krouský E, Dostál J, Ullschmied J, Dudžák R 2017 Plasma Phys. Control. Fusion 59 065007Google Scholar

  • 图 1  实验布局图

    Fig. 1.  Experimental setup.

    图 2  不同激光强度下, 四个方向上对应的电场峰幅值

    Fig. 2.  Peak E-field magnitude versus laser intensity in the four different directions.

    图 3  入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上的电场时间波形

    Fig. 3.  Electric field waveforms detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2.

    图 4  入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上电场的频谱分布

    Fig. 4.  Frequency spectra of the electric fields detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2.

    图 5  入射激光强度为1.5 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4

    Fig. 5.  Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 1.5 × 1015 W/cm2.

    图 6  入射激光强度为6.2 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4

    Fig. 6.  Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 6.2 × 1015 W/cm2.

    图 7  不同方向测量的微波辐射能量随激光强度的变化(a)单位立体角内产生的总辐射能; (b)单位立体角内产生的0.3 GHz以下的辐射能; (c)单位立体角内产生的0.3 GHz以上的辐射能

    Fig. 7.  Radiation energy versus laser intensity at different directions: (a) Total radiation energy detected by the antennas; (b) radiation energy at frequencies lower than 0.3 GHz; (c) radiation energy at frequencies upper than 0.3 GHz.

  • [1]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, Wonterghem V 2017 Matter Radiat. Extremes 2 37Google Scholar

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945Google Scholar

    [3]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [4]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photon. 6 308Google Scholar

    [5]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005Google Scholar

    [6]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby, D R, McKenna P, Brenner C M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. USA 116 3994Google Scholar

    [7]

    Robinson T S, Consoli F, Giltrap S, Eardley S J, Hicks G S, Ditter E J, Ettlinger O, Stuart N H, Notley M, de Angelis R, Najmudin Z, Smith R A 2017 Sci. Rep. 7 983Google Scholar

    [8]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 10Google Scholar

    [9]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457Google Scholar

    [10]

    Gerdin G, Tanis M J, Venneri F 1986 Plasma Phys. Control. Fusion 28 527Google Scholar

    [11]

    Mead M J, Neely D, Gauoin J, Heathcote R, Patel P 2004 Rev. Sci. Instrum. 75 4225Google Scholar

    [12]

    Raimbourg J 2004 Rev. Sci. Instrum. 75 4234Google Scholar

    [13]

    Felber F S 2005 Appl. Phys. Lett. 86 231501Google Scholar

    [14]

    Remo J L, Adams R G, Jones M C 2007 Appl. Opt. 46 6166Google Scholar

    [15]

    Miragliotta J, Brawley B, Sailor C, Spicer J B, Spicer J W M 2011 Proc. SPIE 8037 80370N-1Google Scholar

    [16]

    Chen Z Y, Li J F, Yu Y, Wang J X, Li X Y, Peng Q X, Zhu W J 2012 Phys. Plasmas 19 113116Google Scholar

    [17]

    戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全 2017 物理学报 66 185201Google Scholar

    Dai Y J, Song X W, Gao X, Wang X S, Lin J Q 2017 Acta Phys. Sin. 66 185201Google Scholar

    [18]

    Englesbe A, Elle J, Reid R, Lucero A, Pohle H, Domonkos M, Kalmykov S, Krushelnick K, Schmitt-Sody A 2018 Opt. Lett. 43 4953

    [19]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.: Conf. Ser. 244 032001Google Scholar

    [20]

    Tao Y, Yang M, Wang C, Yang W, Li Y, Liu S, Jiang S, Ding Y, Xiao S 2016 Photon. Sens. 6 249Google Scholar

    [21]

    Bradford P, Woolsey N C, Scott G G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P J R, Montgomery E, Musgrave I, Oliveira P, Rusby D R, Spindloe C, Summers B, Zemaityte E, Zhang Z, Li Y, McKenna P, Neely D 2018 High Power Laser Sci. Eng. 6 e21Google Scholar

    [22]

    Brown C G, Ayers J, Felker B, Ferguson W, Holder J P, Nagel S R, Piston K W, Simanovskaia N, Throop A L, Chung M, Hilsabeck T 2012 Rev. Sci. Instrum. 83 10D729Google Scholar

    [23]

    Brown C G, Clancy T J, Eder D C, Ferguson W, Throop A L 2013 EPJ Web of Conferences 59 08012Google Scholar

    [24]

    Consoli F, de Angelis R, de Marco M, Krasa J, Cikhardt J, Pfeifer M, Margarone D, Klir D, Dudzak R 2018 Plasma Phys. Control. Fusion 60 105006Google Scholar

    [25]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Plasma Scr. 83 055503

    [26]

    Consoli F, de Angelis R, Duvillaret L, Andreoli P L, Cipriani M, Cristofari G, Di Giorgio G, Ingenito F, Verona C 2016 Sci. Rep. 6 27889Google Scholar

    [27]

    Krása J, de Marco M, Cikhardt J, Pfeifer M, Velyhan A, Klír D, Řezáč K, Limpouch J, Krouský E, Dostál J, Ullschmied J, Dudžák R 2017 Plasma Phys. Control. Fusion 59 065007Google Scholar

  • [1] 孙伟, 吕冲, 雷柱, 王钊, 仲佳勇. 磁场对激光驱动的喷流演化影响的二维数值研究. 物理学报, 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [3] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制. 物理学报, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [4] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展. 物理学报, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [5] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [6] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [8] 戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全. 纳秒激光诱导空气等离子体射频辐射特性研究. 物理学报, 2017, 66(18): 185201. doi: 10.7498/aps.66.185201
    [9] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] 辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋. 强激光加载下锡材料微喷颗粒与气体混合回收实验研究及颗粒度分析. 物理学报, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [11] 李彦霏, 李玉同, 朱保君, 袁大伟, 李芳, 张喆, 仲佳勇, 魏会冈, 裴晓星, 刘畅, 原晓霞, 赵家瑞, 韩波, 廖国前, 鲁欣, 华能, 朱宝强, 朱健强, 方智恒, 安红海, 黄秀光, 赵刚, 张杰. 强激光产生的强磁场及其对弓激波的影响. 物理学报, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [12] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流. 物理学报, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [13] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [14] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为. 物理学报, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [15] 辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉. 强激光加载下金属材料微喷回收诊断. 物理学报, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [16] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [17] 杨 汝, 张 波, 丘东元. 开关变换器离散子系统混沌点过程描述及EMI抑制. 物理学报, 2008, 57(3): 1389-1397. doi: 10.7498/aps.57.1389
    [18] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案. 物理学报, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [19] 杨 汝, 张 波. 开关变换器混沌PWM频谱量化特性分析. 物理学报, 2006, 55(11): 5667-5673. doi: 10.7498/aps.55.5667
    [20] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波. 物理学报, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
计量
  • 文章访问数:  6570
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-04-20
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回