搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2 μm波段再入射离轴积分腔输出光谱设计与实验

周子昕 黄印博 卢兴吉 袁子豪 曹振松

引用本文:
Citation:

2 μm波段再入射离轴积分腔输出光谱设计与实验

周子昕, 黄印博, 卢兴吉, 袁子豪, 曹振松

Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band

Zhou Zi-Xin, Huang Yin-Bo, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song
PDF
HTML
导出引用
  • 离轴积分腔输出光谱技术(off-axis integrated cavity output spectroscopy, OA-ICOS)是一种高灵敏度的激光光谱测量技术. 但由于使用密集的高阶模进行光谱探测, OA-ICOS输出信号强度较低, 使得探测灵敏度高度依赖于光源功率. 针对该问题, 本文引入光学再入射的方法, 使激光再次注入光腔, 以提高能量利用率和输出信号强度. 本文使用三维光追踪模拟软件, 设计再入射结构, 研究了影响信号增益的多个因素. 并搭建一套2 μm波段的再入射OA-ICOS装置, 开展了一系列研究实验. 实验数据表明: 再入射方法使OA-ICOS信号增强了8倍, 信噪比提升了4.6倍, 有效改善了探测灵敏度和光谱的吸收深度, 缓解了探测中遇到的信号功率低的问题, 为使用低功率光源和高反射率腔镜提供了有效的方法.
    Off-axis integrated cavity output spectroscopy (OA-ICOS) is a highly sensitive laser spectroscopy technique. However, due to the use of dense high-order modes for detection, OA-ICOS signal power is low, thus making the detection sensitivity highly dependent on the laser power. To this problem, we introduce an optical re-injection method to re-inject the laser back into the optical cavity again, improving the utilization of laser energy and the power of signal. In this paper, we use optical tracking software to design a re-injection structure, and study several factors affecting the signal gain. Then, we build a re-injection OA-ICOS device in the 2 μm band and also conduct a series of experimental researches. Our results show that the re-injection method enhances the OA-ICOS signal power 8 times and signal-to-noise ratio 4.6 times, which effectively improves the detection sensitivity and the absorption depth of the spectral signal, and alleviates the problem of low signal power in OA-ICOS detection.
      通信作者: 曹振松, zscao@aiofm.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(A类)(批准号: XDA17010104)和中国科学院青年创新促进会(批准号: 2015264)资助的课题.
      Corresponding author: Cao Zhen-Song, zscao@aiofm.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA17010104) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015264).
    [1]

    李志新 2015 博士学位论文 (太原: 山西大学)

    Li Z X 2015 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [2]

    Nadeem F, Postma B R, Postma G, Cristescu S M, Mandon J, Harren F J M 2018 Appl. Opt. 57 154Google Scholar

    [3]

    Leen J B, O'Keefe A 2014 Rev. Sci. Instrum. 85 093101Google Scholar

    [4]

    O'Keefe A 1998 Chem. Phys. Lett. 293 331Google Scholar

    [5]

    O'Keefe A, Scherer J J, Paul J B 1999 Chem. Phys. Lett. 307 343Google Scholar

    [6]

    Li Y, Zhan L, Zhang J, Chen L 2015 Acta Oceanol. Sin. 34 34Google Scholar

    [7]

    Mahesh P, Sreenivas G, Rao P V N, Dadhwal V K, Sai Krishna S V S, Mallikarjun K 2015 Int. J. Remote Sens. 36 5754Google Scholar

    [8]

    Li L C, Duo L P, Gong D Y, Ma Y H, Zhang Z G, Wang Y H, Zhou D J, Jin Y Q 2017 Proc. SPIE 10254 102541EGoogle Scholar

    [9]

    Tian C, Wang L, Novick K A 2016 Rapid Commun. Mass Sp. 30 2077Google Scholar

    [10]

    Azhar M, Mandon J, Neerincx A H, Liu Z, Mink J, Merkus P J F M, Cristescu S M, Harren F J M 2017 Appl. Phys. B 123 268Google Scholar

    [11]

    Miller K E, Bajzer Z, Hein S S, Phillips J E, Syed S, Wright A M, Cipriani G, Gibbons S J, Szurszewski J H, Farrugia G, Ordog T, Linden D R 2018 J. Neurogastroenterol. 30 e13333Google Scholar

    [12]

    Bayrakli I 2018 Appl. Opt. 57 4039Google Scholar

    [13]

    Nasir E F, Farooq A 2019 P. Combust. Inst. 37 1297Google Scholar

    [14]

    Lang N, Macherius U, Zimmermann H, Glitsch S, Wiese M, Ropcke J, van Helden J H 2018 Sensors (Basel) 18 2058Google Scholar

    [15]

    Alquaity A B S, Kc U, Popov A, Farooq A 2017 Appl. Phys. B 123 280Google Scholar

    [16]

    Sprenger M, Tetzlaff D, Soulsby C 2017 Rapid Commun. Mass Sp. 31 430Google Scholar

    [17]

    Mering J A, Barker S L L 2018 Anal. Chem. 90 2852Google Scholar

    [18]

    Gupta A, Singh P J, Gaikwad D Y, Udupa D V, Topkar A, Sahoo N K 2018 Rev. Sci. Instrum. 89 023110Google Scholar

    [19]

    Paul J B, Lapson L, Anderson J G 2001 Appl. Opt. 40 4904Google Scholar

    [20]

    Shen G, Chao X, Sun K 2018 Appl. Opt. 57 2947Google Scholar

    [21]

    赵卫雄 2008 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)

    Zhao W X 2008 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

    [22]

    Nadeem F, Mandon J, Cristescu S M, Harren F J M 2018 Appl. Opt. 57 8536Google Scholar

    [23]

    Centeno R, Mandon J, Cristescu S M, Harren F J M 2014 Sensors Actuat. B: Chem. 203 311Google Scholar

    [24]

    Centeno R, Mandon J, Cristescu S M, Harren F J 2014 Opt. Exp. 22 27985Google Scholar

    [25]

    武东城 2014 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Wu D C 2014 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [26]

    Clouser B W, Sarkozy L, Moyer E J 2018 Appl. Opt. 57 6252Google Scholar

  • 图 1  再入射OA-ICOS实验装置光路图

    Fig. 1.  Reinjection OA-ICOS experimental setup.

    图 2  在不同LR时再入射镜Mre上光斑排布情况

    Fig. 2.  Distribution of spot on the re-injection mirror Mre with different L and R.

    图 4  在不同入射角度时再入射镜Mre上的光斑排布情况

    Fig. 4.  Distribution of spot on Mre with different incidence angles.

    图 3  在不同LR时腔镜Mout上光斑排布

    Fig. 3.  Distribution of spot on cavity mirror Mout with different L and R.

    图 5  在不同LR时Mout截面的增益系数

    Fig. 5.  Gain coefficients of Mout with different L and R.

    图 6  Mout能量分布图

    Fig. 6.  Power distribution of Mout

    图 7  在不同再入射位置L时系统输出信号

    Fig. 7.  Output signal at different re-injection position L.

    图 8  模拟与实验增益对比

    Fig. 8.  Gain comparison between simulation and experiment.

    图 9  在不同损耗情况下的增益系数模拟结果

    Fig. 9.  Simulation gain of system with different losses.

    图 10  系统吸收光谱对比

    Fig. 10.  Comparison of absorption spectra of the system.

    图 11  系统灵敏度对比 (a)有再入射; (b)无再入射

    Fig. 11.  Comparison of system sensitivities: (a) With reinjection; (b) without reinjection.

    表 1  再入射结构中不同参数的影响

    Table 1.  Effects of different parameters in reinjection.

    影响参数光斑分布
    Mre光斑数量上限Mre光斑总数Mre光斑密度Mre光斑分布形状Mout能量分布密度约束入射角度
    Mre曲率半径R
    Mre与Min间距L (再入射位置)
    XY方向入射光角度
    再入射孔离轴距离
    下载: 导出CSV
  • [1]

    李志新 2015 博士学位论文 (太原: 山西大学)

    Li Z X 2015 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [2]

    Nadeem F, Postma B R, Postma G, Cristescu S M, Mandon J, Harren F J M 2018 Appl. Opt. 57 154Google Scholar

    [3]

    Leen J B, O'Keefe A 2014 Rev. Sci. Instrum. 85 093101Google Scholar

    [4]

    O'Keefe A 1998 Chem. Phys. Lett. 293 331Google Scholar

    [5]

    O'Keefe A, Scherer J J, Paul J B 1999 Chem. Phys. Lett. 307 343Google Scholar

    [6]

    Li Y, Zhan L, Zhang J, Chen L 2015 Acta Oceanol. Sin. 34 34Google Scholar

    [7]

    Mahesh P, Sreenivas G, Rao P V N, Dadhwal V K, Sai Krishna S V S, Mallikarjun K 2015 Int. J. Remote Sens. 36 5754Google Scholar

    [8]

    Li L C, Duo L P, Gong D Y, Ma Y H, Zhang Z G, Wang Y H, Zhou D J, Jin Y Q 2017 Proc. SPIE 10254 102541EGoogle Scholar

    [9]

    Tian C, Wang L, Novick K A 2016 Rapid Commun. Mass Sp. 30 2077Google Scholar

    [10]

    Azhar M, Mandon J, Neerincx A H, Liu Z, Mink J, Merkus P J F M, Cristescu S M, Harren F J M 2017 Appl. Phys. B 123 268Google Scholar

    [11]

    Miller K E, Bajzer Z, Hein S S, Phillips J E, Syed S, Wright A M, Cipriani G, Gibbons S J, Szurszewski J H, Farrugia G, Ordog T, Linden D R 2018 J. Neurogastroenterol. 30 e13333Google Scholar

    [12]

    Bayrakli I 2018 Appl. Opt. 57 4039Google Scholar

    [13]

    Nasir E F, Farooq A 2019 P. Combust. Inst. 37 1297Google Scholar

    [14]

    Lang N, Macherius U, Zimmermann H, Glitsch S, Wiese M, Ropcke J, van Helden J H 2018 Sensors (Basel) 18 2058Google Scholar

    [15]

    Alquaity A B S, Kc U, Popov A, Farooq A 2017 Appl. Phys. B 123 280Google Scholar

    [16]

    Sprenger M, Tetzlaff D, Soulsby C 2017 Rapid Commun. Mass Sp. 31 430Google Scholar

    [17]

    Mering J A, Barker S L L 2018 Anal. Chem. 90 2852Google Scholar

    [18]

    Gupta A, Singh P J, Gaikwad D Y, Udupa D V, Topkar A, Sahoo N K 2018 Rev. Sci. Instrum. 89 023110Google Scholar

    [19]

    Paul J B, Lapson L, Anderson J G 2001 Appl. Opt. 40 4904Google Scholar

    [20]

    Shen G, Chao X, Sun K 2018 Appl. Opt. 57 2947Google Scholar

    [21]

    赵卫雄 2008 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)

    Zhao W X 2008 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

    [22]

    Nadeem F, Mandon J, Cristescu S M, Harren F J M 2018 Appl. Opt. 57 8536Google Scholar

    [23]

    Centeno R, Mandon J, Cristescu S M, Harren F J M 2014 Sensors Actuat. B: Chem. 203 311Google Scholar

    [24]

    Centeno R, Mandon J, Cristescu S M, Harren F J 2014 Opt. Exp. 22 27985Google Scholar

    [25]

    武东城 2014 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Wu D C 2014 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [26]

    Clouser B W, Sarkozy L, Moyer E J 2018 Appl. Opt. 57 6252Google Scholar

计量
  • 文章访问数:  7886
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-04-23
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回