搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究

陈益沙 廖雷 李进延

引用本文:
Citation:

数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究

陈益沙, 廖雷, 李进延

Experimental study on influence of fiber numerical aperture on mode instability threshold of ytterbium fiber oscillator

Chen Yi-Sha, Liao Lei, Li Jin-Yan
PDF
HTML
导出引用
  • 模式不稳定效应已经成为高功率光纤激光器中限制输出功率和光束质量进一步提升的最大障碍. 用不同数值孔径的20/400阶跃折射率分布掺镱光纤搭建了光纤振荡器, 并测量了它们的光光效率和模式不稳定阈值. 实验结果表明, 在同等注入抽运功率和抽运波长为976 nm的前提下, 具有较低数值孔径的光纤尽管光光效率低于高数值孔径光纤的, 但却表现出更高的模式不稳定阈值. 这一结果表明数值孔径对光纤振荡器中的模式不稳定阈值有着显著的影响. 因此, 对于光纤振荡器的模式不稳定抑制而言, 适当地优化降低数值孔径是一个抑制模式不稳定效应, 进一步提升光纤振荡器模式不稳定阈值的方法, 对于进一步提升光纤振荡器的输出功率和光束质量, 有着明显的现实意义.
    The phenomenon mode instability is the most limiting factor for further scaling the output power and beam quality in high power fiber lasers. Thus, it is meaningful and necessary to study the influencing factor of mode instability and finally find the approaches to mitigating its influence. Theoretical calculations reveal that the fiber V-parameter has a negative effect on fiber amplifier mode instability threshold. Nevertheless, the influence of fiber core numerical aperture (NA) on fiber oscillator mode instability threshold has rarely been investigated compared with that on the fiber amplifier. In this paper, we build a high-power all-fiber laser oscillator pumped by 976nm laser diodes and measure its laser efficiency and mode instability threshold of 20/400 step-index ytterbium doped fiber with different fiber core NA. Experimental result reveals that at the same 976 nm pump power, the fiber with relatively low core NA (~0.059) has a higher mode instability threshold power than that with relatively high core NA (~0.064), and that even a higher core NA (~0.064) fiber has a higher laser efficiency than lower core NA (~0.059) fiber. The fact shows that the fiber core NA has a significant influence on mode instability threshold, and a relatively high core NA results in a lower mode instability threshold. Also, numerical simulations explain the reason why the fiber core NA has a negative effect on mode instability threshold in fiber oscillator. First of all, the higher fiber core NA will support more propagating modes in fiber, and the lower fiber core NA will result in higher order mode (HOM) content leaking into fiber cladding and the overlap of HOM content and gain area is reduced, thus the gain of HOM is relatively reduced. Also, the bending loss of HOM is very sensitive to fiber core NA variation, and the increase of fiber core NA will reduce the bending loss of HOM dramatically. In conclusion, the fiber core NA has a significant negative effect on fiber oscillator mode instability threshold, and numerical simulationscan explain the physical origin of the negative effect of fiber core NA on laser oscillator mode instability threshold. Thus, for the mode instability mitigation in high power laser oscillator, optimizing the NA of active fiber conduces to the increase of mode instability threshold, which is helpful and necessary for further scaling the output power and beam quality.
      通信作者: 李进延, ljy@mail.hust.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB1104400)和国家自然科学基金(批准号: 61735007)资助的课题.
      Corresponding author: Li Jin-Yan, ljy@mail.hust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB1104400) and the National Natural Science Foundation of China (Grant No. 61735007).
    [1]

    Gapontsev V, Fomin V, Ferin A, Abramov M 2001 Proceedings Advanced Solid-State Photonics Seattle, Washington, United States, January 28, 2001 pAWA1

    [2]

    Richardson D, Nilsson J, Clarkson W 2010 JOSA B 27 B63Google Scholar

    [3]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [4]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [5]

    Jauregui C, Eidam T, Limpert J, Tünnermann A 2011 Opt. Express 19 3258Google Scholar

    [6]

    Smith A V, Smith J J 2011 Opt. Express 19 10180Google Scholar

    [7]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407Google Scholar

    [8]

    Jauregui C, Eidam T, Otto H J, Stutzki F, Jansen F, Limpert J, Tünnermann A 2012 Opt. Express 20 440Google Scholar

    [9]

    Jansen F, Stutzki F, Otto H J, Eidam T, Liem A, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Express 20 3997Google Scholar

    [10]

    Haarlammert N, Vries O D, Liem A, Kliner A, Peschel T, Schreiber T, Eberhardt R, Tünnermann A 2012 Opt. Express 20 13274Google Scholar

    [11]

    Otto H J, Stutzki F, Jansen F, Eidam T, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Express 20 15710Google Scholar

    [12]

    Otto H, Stutzki F, Eidam T, Limpert J, Tünnermann A 2013 Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications San Francisco, California, United State, February 2−7, 2013 p86010A

    [13]

    Hansen K R, Alkeskjold T T, Broeng J, Lægsgaard J 2011 Opt. Express 19 23965Google Scholar

    [14]

    Hansen K R, Alkeskjold T T, Broeng J, Lægsgaard J 2012 Opt. Letters 37 2382Google Scholar

    [15]

    Hansen K R, Alkeskjold T T, Broeng J, Lægsgaard J 2013 Opt. Express 21 1944Google Scholar

    [16]

    Smith A V, Smith J J 2012 Opt. Express 20 24545Google Scholar

    [17]

    Smith A V, Smith J J 2013 Opt. Express 21 2606Google Scholar

    [18]

    Smith A V, Smith J J 2013 Opt. Express 21 15168Google Scholar

    [19]

    Dong L 2013 Opt. Express 21 2642Google Scholar

    [20]

    陶汝茂, 周朴, 肖虎, 王小林, 司磊, 刘泽金 2014 激光与光电子学进展 51 020001Google Scholar

    Tao R M, Zhou P, Xiao H, Wang X L, Si L, Liu Z J 2014 Laser & Optoelectroincs Progress 51 020001Google Scholar

    [21]

    陶汝茂, 王小林, 肖虎, 周朴, 刘泽金 2014 光学学报 34 0114002Google Scholar

    Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Optica Sinica 34 0114002Google Scholar

    [22]

    Tao R, Ma P, Wang X, et al. 2014 Fiber-Based Technologies and Applications Wuhan, China, 18–21 June, 2014

    [23]

    Tao R, Ma P, Wang X, Zhou P 2015 IEEE J. Quant. Electr. 51 1

    [24]

    Tao R, Ma P, Wang X, Zhou P, Liu Z 2015 Laser Phys. 26 065103Google Scholar

    [25]

    Tao R, Ma P, Wang X, Zhou P, Liu Z 2015 Laser Phys. Lett. 12 085101Google Scholar

    [26]

    Yang B, Zhang H, Shi C, Wang X, Zhou P, Xu X, Chen J, Liu Z, Lu Q 2016 Opt. Express 24 27828Google Scholar

    [27]

    Tao R, Su R, Ma P, Wang X, Zhou P 2017 Laser Phys. Lett. 14 025101Google Scholar

    [28]

    Tao R, Wang X, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 1Google Scholar

    [29]

    Tao R, Xiao H, Zhang H, Leng J, Wang X, Zhou P, Xu X 2018 Opt. Express 26 25098Google Scholar

    [30]

    Otto H, Modsching N, Jauregui C, Limpert J, Tünnermann A 2015 Opt. Express 23 15265Google Scholar

    [31]

    Ward B 2016 Opt. Express 24 3488Google Scholar

    [32]

    Lægsgaard J 2016 Opt. Express 24 13429Google Scholar

  • 图 1  光纤振荡器结构图(抽运源为976 nm波长的激光器)

    Fig. 1.  Experimental setup of fiber oscillator pumped by 976 nm LDs.

    图 2  光纤1的输出功率-抽运功率曲线 (a) 输出功率/光光效率-抽运抽运功率关系; (b) 输出功率/归一化标准差-抽运功率关系

    Fig. 2.  Output power and pump power curve of fiber 1: (a) Correlation between output power/optical-optical efficiency and pump power; (b) output power/normalized standard deviation and pump power.

    图 3  光纤1的输出功率时域信号 (a) 1400 W抽运源; (b) 1500 W抽运源

    Fig. 3.  Output time domain of different power of fiber 1: (a) 1400 W pump power; (b) 1500 W pump power.

    图 4  光纤1的输出功率频域信号 (a) 1400 W抽运源; (b) 1500 W抽运源

    Fig. 4.  Output frequency domain of different power of fiber 1: (a) 1400 W pump power; (b) 1500 W pump power.

    图 5  光纤2的输出功率-抽运功率曲线 (a) 输出功率/光光效率-抽运功率关系; (b) 输出功率/归一化标准差-抽运功率关系

    Fig. 5.  Output power and pump power curve of fiber 2: (a) Correlation between output power/optical-optical efficiency and pump power; (b) output power/normalized standard deviation and pump power.

    图 6  光纤2的输出功率时域信号 (a) 1500 W抽运源; (b) 1600 W抽运源

    Fig. 6.  Output time domain of different power of fiber 2: (a) 1500 W pump power; (b) 1600 W pump power.

    图 7  光纤2的输出功率频域信号 (a) 1500 W抽运源; (b) 1600 W抽运源

    Fig. 7.  Output frequency domain of different power of fiber 2: (a) 1500 W pump power; (b) 1600 W pump power.

    图 8  具有不同NA光纤中的LP01和LP11模式分布 (a) LP01; (b) LP11

    Fig. 8.  LP01 and LP11 mode profile in fiber at different NA: (a) LP01; (b) LP11.

    图 9  具有不同NA光纤的LP11弯曲损耗随弯曲直径变化曲线

    Fig. 9.  Bending loss of LP11 versus bending radius at different fiber core NA.

    表 1  实验中使用掺镱光纤的参数

    Table 1.  Yb-doped fiber parameter applied in the experiment.

    参数光纤1光纤2
    光纤长度/m2020
    NA(纤芯/包层)0.064/0.4600.059/0.460
    主要掺杂元素Yb/AlYb/Al
    弯曲直径/cm1515
    吸收系数@976 nm/(dB·m–1)1.21.2
    掺镱浓度/wt.%0.650.65
    下载: 导出CSV
  • [1]

    Gapontsev V, Fomin V, Ferin A, Abramov M 2001 Proceedings Advanced Solid-State Photonics Seattle, Washington, United States, January 28, 2001 pAWA1

    [2]

    Richardson D, Nilsson J, Clarkson W 2010 JOSA B 27 B63Google Scholar

    [3]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [4]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [5]

    Jauregui C, Eidam T, Limpert J, Tünnermann A 2011 Opt. Express 19 3258Google Scholar

    [6]

    Smith A V, Smith J J 2011 Opt. Express 19 10180Google Scholar

    [7]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407Google Scholar

    [8]

    Jauregui C, Eidam T, Otto H J, Stutzki F, Jansen F, Limpert J, Tünnermann A 2012 Opt. Express 20 440Google Scholar

    [9]

    Jansen F, Stutzki F, Otto H J, Eidam T, Liem A, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Express 20 3997Google Scholar

    [10]

    Haarlammert N, Vries O D, Liem A, Kliner A, Peschel T, Schreiber T, Eberhardt R, Tünnermann A 2012 Opt. Express 20 13274Google Scholar

    [11]

    Otto H J, Stutzki F, Jansen F, Eidam T, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Express 20 15710Google Scholar

    [12]

    Otto H, Stutzki F, Eidam T, Limpert J, Tünnermann A 2013 Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications San Francisco, California, United State, February 2−7, 2013 p86010A

    [13]

    Hansen K R, Alkeskjold T T, Broeng J, Lægsgaard J 2011 Opt. Express 19 23965Google Scholar

    [14]

    Hansen K R, Alkeskjold T T, Broeng J, Lægsgaard J 2012 Opt. Letters 37 2382Google Scholar

    [15]

    Hansen K R, Alkeskjold T T, Broeng J, Lægsgaard J 2013 Opt. Express 21 1944Google Scholar

    [16]

    Smith A V, Smith J J 2012 Opt. Express 20 24545Google Scholar

    [17]

    Smith A V, Smith J J 2013 Opt. Express 21 2606Google Scholar

    [18]

    Smith A V, Smith J J 2013 Opt. Express 21 15168Google Scholar

    [19]

    Dong L 2013 Opt. Express 21 2642Google Scholar

    [20]

    陶汝茂, 周朴, 肖虎, 王小林, 司磊, 刘泽金 2014 激光与光电子学进展 51 020001Google Scholar

    Tao R M, Zhou P, Xiao H, Wang X L, Si L, Liu Z J 2014 Laser & Optoelectroincs Progress 51 020001Google Scholar

    [21]

    陶汝茂, 王小林, 肖虎, 周朴, 刘泽金 2014 光学学报 34 0114002Google Scholar

    Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Optica Sinica 34 0114002Google Scholar

    [22]

    Tao R, Ma P, Wang X, et al. 2014 Fiber-Based Technologies and Applications Wuhan, China, 18–21 June, 2014

    [23]

    Tao R, Ma P, Wang X, Zhou P 2015 IEEE J. Quant. Electr. 51 1

    [24]

    Tao R, Ma P, Wang X, Zhou P, Liu Z 2015 Laser Phys. 26 065103Google Scholar

    [25]

    Tao R, Ma P, Wang X, Zhou P, Liu Z 2015 Laser Phys. Lett. 12 085101Google Scholar

    [26]

    Yang B, Zhang H, Shi C, Wang X, Zhou P, Xu X, Chen J, Liu Z, Lu Q 2016 Opt. Express 24 27828Google Scholar

    [27]

    Tao R, Su R, Ma P, Wang X, Zhou P 2017 Laser Phys. Lett. 14 025101Google Scholar

    [28]

    Tao R, Wang X, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 1Google Scholar

    [29]

    Tao R, Xiao H, Zhang H, Leng J, Wang X, Zhou P, Xu X 2018 Opt. Express 26 25098Google Scholar

    [30]

    Otto H, Modsching N, Jauregui C, Limpert J, Tünnermann A 2015 Opt. Express 23 15265Google Scholar

    [31]

    Ward B 2016 Opt. Express 24 3488Google Scholar

    [32]

    Lægsgaard J 2016 Opt. Express 24 13429Google Scholar

计量
  • 文章访问数:  5200
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-02-22
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回