搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基超导体的输运性质

李妙聪 陶前 许祝安

引用本文:
Citation:

铁基超导体的输运性质

李妙聪, 陶前, 许祝安

The transport properties of iron-based superconductors

Li Miao-Cong, Tao Qian, Xu Zhu-An
PDF
HTML
导出引用
  • 在铁基超导体中存在着多种有序态, 例如电子向列相和自旋密度波等, 从而呈现出丰富的物理现象. 输运性质的测量能为认识铁基超导体的低能激发提供极为有用的信息. 铁砷超导体由于其电子结构的多能带特性, 其电阻率和霍尔系数与温度的关系出现多样性的变化, 但在正常态并没有看到有类似铜氧化物超导体的赝能隙打开等奇异行为. 在空穴型掺杂的铁基超导体中观测到霍尔系数在低温下变号, 对应温区的电阻率上出现一个很宽的鼓包等, 可能是从非相干到相干态的转变. 热电势行为也表现出与铜氧化物超导体的明显差异, 比如铁基超导体的正常态热电势的绝对值反而在最佳掺杂区是最大的, 这也许跟强的带间散射有关. 能斯特效应表明铁基超导体在$T_{\rm{c}}$以上的超导位相涨落并不明显, 与铜氧化物超导体存在明显差别. 在铁基超导体上所显示出来的这些反常热电性质, 并没有在类似结构的镍基超导体(如LaNiAsO)上观测到, 镍基超导体表现得更像一个通常的金属. 这些均说明铁基超导体的奇异输运性质与其高温超导电性存在内在的关联, 这些因素是建立其超导机理时需要考虑进去的.
    There are a variety of order states in iron-based pnictides, such as electronic nematic phase, spin density wave, and so on, which leads to plenty of novel physical phenomena. The measurements of transport properties can provide extremely useful information for understanding of the low-energy excitations of iron-based superconductors. Due to the multi-band electronic structure in iron-based pnictides, the temperature dependence of resistivity and Hall coefficient varies with different systems, however, there are no evidence for the pseudo-gap opening in the normal state which is a common feature in underdoped high-$T_{\rm{c}}$ cuprates. In the hole-doped iron-based superconductors, the Hall coefficient changes its sign in low temperatures, and meanwhile the resistivity shows a broad hump in the same temperature range. Such a behavior is proposed as a crossover from incoherent to coherent transport. The Seebeck coefficients of iron-based superconductors also show remarkable differences from the cuprates. In iron-based superconductors, the absolute value of Seebeck coefficients in the normal state becomes the largest at the optimally doping point with highest $T_{\rm{c}}$, which is probably related to the strong inter-band scattering. The Nernst effect in the normal state of iron-based superconductors indicates that superconducting phase fluctuations is not obvious above $T_{\rm{c}}$, which is also significantly different from the cuprates. These unusual thermoelectric properties observed in iron-based superconductors have not been observed in the nickel-based pnictide superconductors with the analogous structure, i.e., LaNiAsO, and the nickel-based superconductors behave more like a usual metal. All these results above illustrate that these unusual transport properties of iron-based superconductors are inherently associated with their high temperature superconductivity, and these factors should be taken into account in the theory on its superconducting mechanism.
      通信作者: 许祝安, zhuan@zju.edu.cn
    • 基金项目: 国家重点研发计划重点专项(批准号: 2016YFA0300402)和国家自然科学基金(批准号: 11774305)资助的课题
      Corresponding author: Xu Zhu-An, zhuan@zju.edu.cn
    • Funds: Project supported by the National Key Projects for Research & Development of China (Grant No. 2016YFA0300402), and the National Natural Science Foundation of China (Grant No.11774305)
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [2]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [3]

    Kushnirenko Y, Fedorov A, Haubold E, Thirupathaiah S, Wolf T, Aswartham S, Morozov I, Kim T, Büchner B, Borisenko S 2018 Phys. Rev. B 97 180501Google Scholar

    [4]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325Google Scholar

    [5]

    Dong X L, Jin K, Yuan D D, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515Google Scholar

    [6]

    Shi M C, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [7]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Shang C, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [8]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [9]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, Cao G H 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [10]

    Klauss H H, Luetkens H, Klingeler R, Hess C, Litterst F J, Kraken M, Korshunov M M, Eremin I, Drechsler S L, Khasanov R, Amato A, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Büchner B 2008 Phys. Rev. Lett. 101 077005Google Scholar

    [11]

    Wen H H, Mu G, Fang L, Yang H, Zhu X 2008 Europhys. Lett. 82 17009Google Scholar

    [12]

    Mu G, Fang L, Yang H, Zhu X, Cheng P, Wen H H 2008 J. Phys. Soc. Jpn. 77 15Google Scholar

    [13]

    Wang C, Jiang S, Tao Q, Ren Z, Li Y K, Li L J, Feng C M, Dai J H, Cao G H, Xu Z A 2009 Europhys. Lett. 86 47002Google Scholar

    [14]

    Lai K, Takemori A, Miyasaka S, Engetsu F, Mukuda H, Tajima S 2014 Phys. Rev. B 90 064504Google Scholar

    [15]

    Hess C, Kondrat A, Narduzzo A, Hamann-Borrero J, Klingeler R, Werner J, Behr G, Büchner B 2009 Europhys. Lett. 87 17005Google Scholar

    [16]

    Suzuki S, Miyasaka S, Tajima S, Kida T, Hagiwara M 2009 J. Phys. Soc. Jpn. 78 114712Google Scholar

    [17]

    Haule K, Kotliar G 2009 New J. Phys. 11 025021Google Scholar

    [18]

    Sefat A S, Huq A, McGuire M A, Jin R, Sales B C, Mandrus D, Cranswick L M, Stephens P W, Stone K H 2008 Phys. Rev. B 78 104505Google Scholar

    [19]

    Ishida S, Nakajima M, Liang T, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Tomioka Y, Ito T, Uchida S 2013 J. Am. Chem. Soc. 135 3158Google Scholar

    [20]

    Nakajima M, Ishida S, Tanaka T, Kihou K, Tomioka Y, Saito T, Lee C H, Fukazawa H, Kohori Y, Kakeshita T, Iyo A, Ito T, Eisaki H, Uchida S 2014 Sci. Rep. 4 5873

    [21]

    Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T, Chen X H 2016 Phys. Rev. Lett. 116 147001Google Scholar

    [22]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512Google Scholar

    [23]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519Google Scholar

    [24]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262Google Scholar

    [25]

    Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, Wu M K 2008 Europhys. Lett. 84 37002Google Scholar

    [26]

    Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y 2009 J. Phys. Soc. Jpn. 78 074712Google Scholar

    [27]

    Katayama N, Ji S, Louca D, Lee S, Fujita M, J. Sato T, Wen J S, Xu Z J, Gu G D, Xu G Y, Lin Z W, Enoki M, Chang S, Yamada K, Tranquada J M 2010 J. Phys. Soc. Jpn. 79 113702Google Scholar

    [28]

    Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824Google Scholar

    [29]

    Ying J, Wang X, Wu T, Xiang Z, Liu R, Yan Y, Wang A, Zhang M, Ye G, Cheng P, Hu J P, Chen X H 2011 Phys. Rev. Lett. 107 067001Google Scholar

    [30]

    Xu X F, Jiao W H, Zhou N, Li Y K, Chen B, Cao C, Dai J H, Bangura A F, Cao G H 2014 Phys. Rev. B 89 104517Google Scholar

    [31]

    Blomberg E, Tanatar M, Fernandes R, Mazin I, Shen B, Wen H H, Johannes M, Schmalian J, Prozorov R 2013 Nat. Commun. 4 1914

    [32]

    Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B, Chen X H 2014 Phys. Rev. B 89 174512Google Scholar

    [33]

    Malinowski P, Jiang Q, Sanchez J J, Mutch J, Liu Z, Went P, Liu J, Ryan P J, Kim J W, Chu J H 2020 Nat. Phys. 16 1189

    [34]

    Jesche A, Nitsche F, Probst S, Doert T, Müller P, Ruck M 2012 Phys. Rev. B 86 134511Google Scholar

    [35]

    Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001Google Scholar

    [36]

    Fang L, Luo H Q, Cheng P, Wang Z S, Jia Y, Mu G, Shen B, Mazin I I, Shan L, Ren C, Wen H H 2009 Phys. Rev. B 80 140508Google Scholar

    [37]

    Iida K, Grinenko V, Kurth F, Ichinose A, Tsukada I, Ahrens E, Pukenas A, Chekhonin P, Skrotzki W, Teresiak A, Hühne R, Aswartham S, Wurmehl S, Mönch I, Erbe M, Hänisch J, Holzapfel B, Drechsler S L, Efremov D V 2016 Sci. Rep. 6 1Google Scholar

    [38]

    Ohgushi K, Kiuchi Y 2012 Phys. Rev. B 85 064522Google Scholar

    [39]

    Shimojima T, Sakaguchi F, Ishizaka K, Ishida Y, Kiss T, Okawa M, Togashi T, Chen C T, Watanabe S, Arita M, Shimada K, Namatame H, Taniguchi M, Ohgushi K, Kasahara S, Terashima T, Shibauchi T, Matsuda Y, Chainani A, Shin S 2011 Science 332 564Google Scholar

    [40]

    Liu Y, Lograsso T A 2014 Phys. Rev. B 90 224508Google Scholar

    [41]

    Xu N, Richard P, Shi X, van Roekeghem A, Qian T, Razzoli E, Rienks E, Chen G F, Ieki E, Nakayama K, Sato T, Takahashi T, Shi M, Ding H 2013 Phys. Rev. B 88 220508Google Scholar

    [42]

    Hayes I M, Maksimovic N, Lopez G N, Chan M K, Ramshaw B, McDonald R D, Analytis J G 2020 Nat. Phys. 10.1038/s41567-020-0982-x

    [43]

    Obertelli S, Cooper J, Tallon J 1992 Phys. Rev. B 46 14928Google Scholar

    [44]

    Tallon J L, Bernhard C, Shaked H, Hitterman R, Jorgensen J 1995 Phys. Rev. B 51 12911Google Scholar

    [45]

    Wang C, Li Y, Zhu Z, Jiang S, Lin X, Luo Y, Chi S, Li L, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2009 Phys. Rev. B 79 054521Google Scholar

    [46]

    Li L J, Li Y K, Ren Z, Luo Y K, Lin X, He M, Tao Q, Zhu Z W, Cao G H, Xu Z A 2008 Phys. Rev. B 78 132506Google Scholar

    [47]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New J. Phys. 11 025008Google Scholar

    [48]

    Pallecchi I, Lamura G, Tropeano M, Putti M, Viennois R, Giannini E, Van Der Marel D 2009 Phys. Rev. B 80 214511Google Scholar

    [49]

    Zhu Z W, Xu Z A, Lin X, Cao G H, Feng C M, Chen G F, Li Z, Luo J L, Wang N L 2008 New J. Phys. 10 063021Google Scholar

    [50]

    Lin X, Guo H J, Shen C Y, Luo Y K, Tao Q, Cao G H, Xu Z A 2011 Phys. Rev. B 83 014503Google Scholar

    [51]

    Wu M K, Wang M J, Yeh K W 2013 Sci. Technol. Adv. Mater. 14 014402Google Scholar

    [52]

    Li Y K, Lin X, Zhou T, Shen J Q, Tao Q, Cao G H, Xu Z A 2009 J. Phys. Condens. Matter 21 355702Google Scholar

    [53]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2009 Phys. Rev. B 79 104504Google Scholar

    [54]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2010 J. Appl. Phys. 107 09E145Google Scholar

    [55]

    Lv B, Gooch M, Lorenz B, Chen F, Guloy A, Chu C 2009 New J. Phys. 11 025013Google Scholar

    [56]

    Tao Q, Zhu Z W, Lin X, Cao G H, Xu Z A, Chen G F, Luo J L, Wang N L 2010 J. Phys. Condens. Matter. 22 072201Google Scholar

    [57]

    Matusiak M, Plackowski T, Bukowski Z, Zhigadlo N, Karpinski J 2009 Phys. Rev. B 79 212502Google Scholar

    [58]

    Xu Z A, Ong N P, Wang Y, Kakeshita T, Uchida S 2000 Nature 406 486Google Scholar

    [59]

    Sondheimer E 1948 Proc. R. Soc. Lond. A. Math. Phys. Sci. 193 484

    [60]

    Matusiak M, Bukowski Z, Karpinski J 2010 Phys. Rev. B 81 020510Google Scholar

    [61]

    Matusiak M, Bukowski Z, Karpinski J 2011 Phys. Rev. B 83 224505Google Scholar

    [62]

    Richard P, Nakayama K, Sato T, Neupane M, Xu Y M, Bowen J H, Chen G F, Luo J L, Wang N L, Dai X, Fang Z, Ding H, Takahashi T 2010 Phys. Rev. Lett. 104 137001Google Scholar

    [63]

    Harrison N, Sebastian S 2009 Phys. Rev. B 80 224512Google Scholar

    [64]

    Chen L, Xiang Z J, Tinsman C, Lei B, Chen X H, Gu G D, Li L 2020 Phys. Rev. B 102 054503Google Scholar

    [65]

    Arsenijević S, Hodovanets H, Gaál R, Forró L, Bud'ko S L, Canfield P C 2013 Phys. Rev. B 87 224508Google Scholar

    [66]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 1

    [67]

    Analytis J G, Kuo H, McDonald R D, Wartenbe M, Hussey N, Fisher I 2014 Nat. Phys. 10 194Google Scholar

    [68]

    Shishido H, Bangura A, Coldea A, Tonegawa S, Hashimoto K, Kasahara S, Ikeda H, Terashima T, Settai R, Ōnuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008Google Scholar

    [69]

    Walmsley P, Putzke C, Malone L, Guillamón I, Vignolles D, Proust C, Badoux S, Coldea A, Watson M D, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Carrington A 2013 Phys. Rev. Lett. 110 257002Google Scholar

    [70]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [71]

    Hayes I M, McDonald R D, Breznay N P, Helm T, Moll P J, Wartenbe M, Shekhter A, Analytis J G 2016 Nat. Phys. 12 916Google Scholar

    [72]

    Hayes I M, Hao Z, Maksimovic N, Lewin S K, Chan M K, McDonald R D, Ramshaw B, Moore J E, Analytis J G 2018 Phys. Rev. Lett. 121 197002Google Scholar

    [73]

    Maiwald J, Jeevan H, Gegenwart P 2012 Phys. Rev. B 85 024511Google Scholar

    [74]

    Böhmer A, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Reinecker M, Schranz W, Meingast C 2014 Phys. Rev. Lett. 112 047001Google Scholar

  • 图 1  各掺杂浓度下的面内电阻率随温度变化的曲线, 分别为以下样品: (a) Ba(Fe1–xCox)2As2, (b) BaFe2(As1–xPx)2, (c) Ba1–xKxFe2As2[19]

    Fig. 1.  Doping evolution of the temperature dependence of the in-plane resistivity for (a) Ba(Fe1–xCox)2As2, (b) BaFe2(As1–xPx)2, and (c) Ba1–xKxFe2As2[19]

    图 2  空穴掺杂的“122”体系的霍尔系数随温度的变化[38]

    Fig. 2.  The temperature dependence of Hall coefficients for hole-doping “122”-type iron-based superconductors[38]

    图 3  (a) 样品SmFe1–xCoxAsO随温度变化的热电势, (b) 热电势绝对值及超导转变温度随掺杂浓度的变化[45]

    Fig. 3.  (a) The temperature dependence of Seebeck coefficients for SmFe1–xCoxAsO, (b) Doping dependence of thermopower, |S(300 K)|, |S'(300 K)| and superconducting transition temperature $T^{\rm{mid}}_{{\rm{c}}}$ for SmFe1–xCoxAsO samples[45]

    图 4  多个体系铁基超导体的热电势最大值与$T_{\rm{c}}$之间的关系. 图中未加引文的部分为本文作者尚未发表的数据

    Fig. 4.  The relation between the maximum of thermopower and the $T_{\rm{c}}$ for various iron-based superconductors. The unreferenced portion of the figure is the unpublished data

    图 5  能斯特系数与温度之间的曲线, 分别为: (a) “1111”体系[49]; (b) “122”体系中. 图中BaFe2As2的结果与文献[60]一致

    Fig. 5.  The temperature dependence of Nernst coefficients for (a) “1111”-type[49]; (b) “122”-type. The result of BaFe2As2 is consistent with the report in the Ref. [60]

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [2]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [3]

    Kushnirenko Y, Fedorov A, Haubold E, Thirupathaiah S, Wolf T, Aswartham S, Morozov I, Kim T, Büchner B, Borisenko S 2018 Phys. Rev. B 97 180501Google Scholar

    [4]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325Google Scholar

    [5]

    Dong X L, Jin K, Yuan D D, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515Google Scholar

    [6]

    Shi M C, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [7]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Shang C, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [8]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [9]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, Cao G H 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [10]

    Klauss H H, Luetkens H, Klingeler R, Hess C, Litterst F J, Kraken M, Korshunov M M, Eremin I, Drechsler S L, Khasanov R, Amato A, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Büchner B 2008 Phys. Rev. Lett. 101 077005Google Scholar

    [11]

    Wen H H, Mu G, Fang L, Yang H, Zhu X 2008 Europhys. Lett. 82 17009Google Scholar

    [12]

    Mu G, Fang L, Yang H, Zhu X, Cheng P, Wen H H 2008 J. Phys. Soc. Jpn. 77 15Google Scholar

    [13]

    Wang C, Jiang S, Tao Q, Ren Z, Li Y K, Li L J, Feng C M, Dai J H, Cao G H, Xu Z A 2009 Europhys. Lett. 86 47002Google Scholar

    [14]

    Lai K, Takemori A, Miyasaka S, Engetsu F, Mukuda H, Tajima S 2014 Phys. Rev. B 90 064504Google Scholar

    [15]

    Hess C, Kondrat A, Narduzzo A, Hamann-Borrero J, Klingeler R, Werner J, Behr G, Büchner B 2009 Europhys. Lett. 87 17005Google Scholar

    [16]

    Suzuki S, Miyasaka S, Tajima S, Kida T, Hagiwara M 2009 J. Phys. Soc. Jpn. 78 114712Google Scholar

    [17]

    Haule K, Kotliar G 2009 New J. Phys. 11 025021Google Scholar

    [18]

    Sefat A S, Huq A, McGuire M A, Jin R, Sales B C, Mandrus D, Cranswick L M, Stephens P W, Stone K H 2008 Phys. Rev. B 78 104505Google Scholar

    [19]

    Ishida S, Nakajima M, Liang T, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Tomioka Y, Ito T, Uchida S 2013 J. Am. Chem. Soc. 135 3158Google Scholar

    [20]

    Nakajima M, Ishida S, Tanaka T, Kihou K, Tomioka Y, Saito T, Lee C H, Fukazawa H, Kohori Y, Kakeshita T, Iyo A, Ito T, Eisaki H, Uchida S 2014 Sci. Rep. 4 5873

    [21]

    Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T, Chen X H 2016 Phys. Rev. Lett. 116 147001Google Scholar

    [22]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512Google Scholar

    [23]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519Google Scholar

    [24]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262Google Scholar

    [25]

    Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, Wu M K 2008 Europhys. Lett. 84 37002Google Scholar

    [26]

    Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y 2009 J. Phys. Soc. Jpn. 78 074712Google Scholar

    [27]

    Katayama N, Ji S, Louca D, Lee S, Fujita M, J. Sato T, Wen J S, Xu Z J, Gu G D, Xu G Y, Lin Z W, Enoki M, Chang S, Yamada K, Tranquada J M 2010 J. Phys. Soc. Jpn. 79 113702Google Scholar

    [28]

    Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824Google Scholar

    [29]

    Ying J, Wang X, Wu T, Xiang Z, Liu R, Yan Y, Wang A, Zhang M, Ye G, Cheng P, Hu J P, Chen X H 2011 Phys. Rev. Lett. 107 067001Google Scholar

    [30]

    Xu X F, Jiao W H, Zhou N, Li Y K, Chen B, Cao C, Dai J H, Bangura A F, Cao G H 2014 Phys. Rev. B 89 104517Google Scholar

    [31]

    Blomberg E, Tanatar M, Fernandes R, Mazin I, Shen B, Wen H H, Johannes M, Schmalian J, Prozorov R 2013 Nat. Commun. 4 1914

    [32]

    Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B, Chen X H 2014 Phys. Rev. B 89 174512Google Scholar

    [33]

    Malinowski P, Jiang Q, Sanchez J J, Mutch J, Liu Z, Went P, Liu J, Ryan P J, Kim J W, Chu J H 2020 Nat. Phys. 16 1189

    [34]

    Jesche A, Nitsche F, Probst S, Doert T, Müller P, Ruck M 2012 Phys. Rev. B 86 134511Google Scholar

    [35]

    Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001Google Scholar

    [36]

    Fang L, Luo H Q, Cheng P, Wang Z S, Jia Y, Mu G, Shen B, Mazin I I, Shan L, Ren C, Wen H H 2009 Phys. Rev. B 80 140508Google Scholar

    [37]

    Iida K, Grinenko V, Kurth F, Ichinose A, Tsukada I, Ahrens E, Pukenas A, Chekhonin P, Skrotzki W, Teresiak A, Hühne R, Aswartham S, Wurmehl S, Mönch I, Erbe M, Hänisch J, Holzapfel B, Drechsler S L, Efremov D V 2016 Sci. Rep. 6 1Google Scholar

    [38]

    Ohgushi K, Kiuchi Y 2012 Phys. Rev. B 85 064522Google Scholar

    [39]

    Shimojima T, Sakaguchi F, Ishizaka K, Ishida Y, Kiss T, Okawa M, Togashi T, Chen C T, Watanabe S, Arita M, Shimada K, Namatame H, Taniguchi M, Ohgushi K, Kasahara S, Terashima T, Shibauchi T, Matsuda Y, Chainani A, Shin S 2011 Science 332 564Google Scholar

    [40]

    Liu Y, Lograsso T A 2014 Phys. Rev. B 90 224508Google Scholar

    [41]

    Xu N, Richard P, Shi X, van Roekeghem A, Qian T, Razzoli E, Rienks E, Chen G F, Ieki E, Nakayama K, Sato T, Takahashi T, Shi M, Ding H 2013 Phys. Rev. B 88 220508Google Scholar

    [42]

    Hayes I M, Maksimovic N, Lopez G N, Chan M K, Ramshaw B, McDonald R D, Analytis J G 2020 Nat. Phys. 10.1038/s41567-020-0982-x

    [43]

    Obertelli S, Cooper J, Tallon J 1992 Phys. Rev. B 46 14928Google Scholar

    [44]

    Tallon J L, Bernhard C, Shaked H, Hitterman R, Jorgensen J 1995 Phys. Rev. B 51 12911Google Scholar

    [45]

    Wang C, Li Y, Zhu Z, Jiang S, Lin X, Luo Y, Chi S, Li L, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2009 Phys. Rev. B 79 054521Google Scholar

    [46]

    Li L J, Li Y K, Ren Z, Luo Y K, Lin X, He M, Tao Q, Zhu Z W, Cao G H, Xu Z A 2008 Phys. Rev. B 78 132506Google Scholar

    [47]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New J. Phys. 11 025008Google Scholar

    [48]

    Pallecchi I, Lamura G, Tropeano M, Putti M, Viennois R, Giannini E, Van Der Marel D 2009 Phys. Rev. B 80 214511Google Scholar

    [49]

    Zhu Z W, Xu Z A, Lin X, Cao G H, Feng C M, Chen G F, Li Z, Luo J L, Wang N L 2008 New J. Phys. 10 063021Google Scholar

    [50]

    Lin X, Guo H J, Shen C Y, Luo Y K, Tao Q, Cao G H, Xu Z A 2011 Phys. Rev. B 83 014503Google Scholar

    [51]

    Wu M K, Wang M J, Yeh K W 2013 Sci. Technol. Adv. Mater. 14 014402Google Scholar

    [52]

    Li Y K, Lin X, Zhou T, Shen J Q, Tao Q, Cao G H, Xu Z A 2009 J. Phys. Condens. Matter 21 355702Google Scholar

    [53]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2009 Phys. Rev. B 79 104504Google Scholar

    [54]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2010 J. Appl. Phys. 107 09E145Google Scholar

    [55]

    Lv B, Gooch M, Lorenz B, Chen F, Guloy A, Chu C 2009 New J. Phys. 11 025013Google Scholar

    [56]

    Tao Q, Zhu Z W, Lin X, Cao G H, Xu Z A, Chen G F, Luo J L, Wang N L 2010 J. Phys. Condens. Matter. 22 072201Google Scholar

    [57]

    Matusiak M, Plackowski T, Bukowski Z, Zhigadlo N, Karpinski J 2009 Phys. Rev. B 79 212502Google Scholar

    [58]

    Xu Z A, Ong N P, Wang Y, Kakeshita T, Uchida S 2000 Nature 406 486Google Scholar

    [59]

    Sondheimer E 1948 Proc. R. Soc. Lond. A. Math. Phys. Sci. 193 484

    [60]

    Matusiak M, Bukowski Z, Karpinski J 2010 Phys. Rev. B 81 020510Google Scholar

    [61]

    Matusiak M, Bukowski Z, Karpinski J 2011 Phys. Rev. B 83 224505Google Scholar

    [62]

    Richard P, Nakayama K, Sato T, Neupane M, Xu Y M, Bowen J H, Chen G F, Luo J L, Wang N L, Dai X, Fang Z, Ding H, Takahashi T 2010 Phys. Rev. Lett. 104 137001Google Scholar

    [63]

    Harrison N, Sebastian S 2009 Phys. Rev. B 80 224512Google Scholar

    [64]

    Chen L, Xiang Z J, Tinsman C, Lei B, Chen X H, Gu G D, Li L 2020 Phys. Rev. B 102 054503Google Scholar

    [65]

    Arsenijević S, Hodovanets H, Gaál R, Forró L, Bud'ko S L, Canfield P C 2013 Phys. Rev. B 87 224508Google Scholar

    [66]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 1

    [67]

    Analytis J G, Kuo H, McDonald R D, Wartenbe M, Hussey N, Fisher I 2014 Nat. Phys. 10 194Google Scholar

    [68]

    Shishido H, Bangura A, Coldea A, Tonegawa S, Hashimoto K, Kasahara S, Ikeda H, Terashima T, Settai R, Ōnuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008Google Scholar

    [69]

    Walmsley P, Putzke C, Malone L, Guillamón I, Vignolles D, Proust C, Badoux S, Coldea A, Watson M D, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Carrington A 2013 Phys. Rev. Lett. 110 257002Google Scholar

    [70]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [71]

    Hayes I M, McDonald R D, Breznay N P, Helm T, Moll P J, Wartenbe M, Shekhter A, Analytis J G 2016 Nat. Phys. 12 916Google Scholar

    [72]

    Hayes I M, Hao Z, Maksimovic N, Lewin S K, Chan M K, McDonald R D, Ramshaw B, Moore J E, Analytis J G 2018 Phys. Rev. Lett. 121 197002Google Scholar

    [73]

    Maiwald J, Jeevan H, Gegenwart P 2012 Phys. Rev. B 85 024511Google Scholar

    [74]

    Böhmer A, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Reinecker M, Schranz W, Meingast C 2014 Phys. Rev. Lett. 112 047001Google Scholar

  • [1] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑. 物理学报, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [4] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [6] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [7] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [8] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [9] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [10] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [11] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [12] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [13] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [14] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [15] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [16] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [17] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [18] 晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌. K0.8Fe2Se2晶体c轴向载流子输运特性的研究. 物理学报, 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [19] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [20] 余旻, 杨宏顺, 柴一晟, 阮可青, 李鹏程, 李志权, 陈兆甲, 曹烈兆. 电子型超导体Sm2-xCexCuO4(0.00≤x≤0.21)的异常热电势与电阻率. 物理学报, 2002, 51(3): 674-678. doi: 10.7498/aps.51.674
计量
  • 文章访问数:  6825
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2020-12-25
  • 上网日期:  2020-12-24
  • 刊出日期:  2021-01-05

/

返回文章
返回