搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N+注入修复外延Fe膜面内六重磁对称

姜兴东 管兴胤 黄娟娟 范小龙 薛德胜

引用本文:
Citation:

N+注入修复外延Fe膜面内六重磁对称

姜兴东, 管兴胤, 黄娟娟, 范小龙, 薛德胜

Recovering in-plane six-fold magnetic symmetry of epitaxial Fe films by N+ implantation

Jiang Xing-Dong, Guan Xing-Yin, Huang Juan-Juan, Fan Xiao-Long, Xue De-Sheng
PDF
HTML
导出引用
  • 为了研究离子注入对外延磁性薄膜面内磁各向异性的影响, 用离子加速器对在有错切角的Si(111)面上外延生长的Fe膜进行了N+注入实验. 随着N+注入剂量的增加, 外延生长的Fe膜的面内磁各向异性逐渐从二重对称改变为六重对称. 通过透射电子显微镜和刻蚀实验验证, 发现离子辐照改变了Fe膜表面和界面的状态. 未辐照Fe膜面内二重磁对称来自于由于Si(111)面的错切使得在薄膜界面和表面处形成的原子台阶. N+注入的溅射作用使得Fe膜表面的原子台阶被擦除, N+注入使得缓冲层和Fe膜界面处相互扩散导致界面处原子台阶消失. 因此, 外延Fe膜在大剂量N+注入后表现出Fe(111)面诱导的六重磁对称. 研究结果对于提高面内磁记录密度有潜在的应用价值.
    In order to study the effect of ion implantation on the in-plane magnetic anisotropy of epitaxial magnetic films, a 3-nm Al buffer layer is epitaxially grown on an Si (111) substrate with a miscut angle, and then 25-nm Fe is grown on the buffer layer. High-resolution X-ray diffraction reveals that the epitaxial Fe film has a (111)-oriented bcc structure. The epitaxial Fe films are implanted by 10 keV N+ ions with dose up to 5 × 1016 ions/cm2. The change and mechanism of the in-plane magnetic anisotropy of the epitaxial Fe film are studied systematically. It is found that the in-plane magnetic anisotropy of the epitaxial Fe film is gradually changed from two-fold to six-fold symmetry with the increase of N+ implantation dose. It is confirmed by transmission electron microscopy and etching experiments that ion implantation changes the surface and interface state of Fe film. This result is consistent with the result from the SRIM software simulation. The in-plane magnetic uniaxial anisotropy of epitaxial Fe film comes from atomic steps at the surface and the interface of the Fe film. These steps result from Si (111) substrate with a miscut angle. Ion implantation has effects on sputtering and atomic diffusion. The sputtering effect causes the step at the surface of the Fe film to be erased, and the diffusion of the atom leads the step at the interface of the Fe film to disappear. The in-plane uniaxial anisotropy induced by the atomic step is weakened, and the magnetocrystalline anisotropy induced by the Fe (111) plane is dominant. Therefore, the epitaxial Fe film exhibits Fe (111) plane induced six-fold magnetic symmetry after high-dose N+ implantation. This work indicates that the in-plane magnetic anisotropy of Fe films epitaxially grown on Si (111) substrate with miscut angle can be modified and precisely controlled by ion implantation. This work may be of practical significance for improving the density of in-plane magnetic recording material.
      通信作者: 姜兴东, jiangxd@lzu.edu.cn ; 薛德胜, xueds@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51402141, 11674143, 11405133)资助的课题.
      Corresponding author: Jiang Xing-Dong, jiangxd@lzu.edu.cn ; Xue De-Sheng, xueds@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402141, 11674143, 11405133).
    [1]

    杨丽 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yang L 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [2]

    Chen C H, Talnagi J W, Liu L F, Vora P, Higgins A, Liu S 2005 IEEE Trans. Magn. 41 3832Google Scholar

    [3]

    李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖 2018 物理学报 67 016104Google Scholar

    Li Z F, Jia Y Y, Liu R D, Xu Y H, Wang G H, Xia X B, Shen W Z 2018 Acta Phys. Sin. 67 016104Google Scholar

    [4]

    Maziewski A, Mazalski P, Kurant Z, Liedke M O, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T 2012 Phys. Rev. B 85 054427Google Scholar

    [5]

    丁斌峰, 相凤华, 王立明, 王洪涛 2012 物理学报 61 046105Google Scholar

    Ding B F, Xiang F H, Wang L M, Wang H T 2012 Acta Phys. Sin. 61 046105Google Scholar

    [6]

    Bali R, Wintz S, Meutzner F, Hübner R, Boucher R, Ünal A A, Valencia S, Neudert A, Potzger K, Bauch J 2014 Nano Lett. 14 435Google Scholar

    [7]

    Jaafar M, Sanz R, Mccord J, Jensen J, Schäfer R, Vázquez M, Asenjo A 2011 Phys. Rev. B 83 094422Google Scholar

    [8]

    McCord J, Schultz L, Fassbender J 2008 Adv. Mater. 20 2090Google Scholar

    [9]

    Kasiuk J, Fedotova J, Przewoźnik J, Kapusta C, Skuratov V, Svito I, Bondariev V, Kołtunowicz T 2017 Acta Phys. Pol. 132 206Google Scholar

    [10]

    Sakamaki M, Amemiya K, Liedke M, Fassbender J, Mazalski P, Sveklo I, Maziewski A 2012 Phys. Rev. B 86 024418Google Scholar

    [11]

    Shin S C, Kim S, Han J, Hong J, Kang S 2011 Appl. Phys. Express 4 116501Google Scholar

    [12]

    Beaujour J M, Kent A D, Ravelosona D, Tudosa I, Fullerton E E 2011 J. Appl. Phys. 109 033917Google Scholar

    [13]

    Mccord J, Gemming T, Schultz L, Fassbender J, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502Google Scholar

    [14]

    Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267Google Scholar

    [15]

    Fassbender J, von Borany J, Mücklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R 2006 Phys. Rev. B 73 184410Google Scholar

    [16]

    Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A 2009 Appl. Phys. Lett. 95 022502Google Scholar

    [17]

    Wei Y P, Gao C X, Dong C H, Ma Z K, Li J G, Xue D S 2014 Appl. Surf. Sci. 293 71Google Scholar

    [18]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818Google Scholar

    [19]

    Ye J, He W, Wu Q, Liu H L, Zhang X Q, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 2148Google Scholar

    [20]

    Liu H L, He W, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 J. Appl. Phys. 112 093916Google Scholar

    [21]

    Rezende S M, Moura J, de Aguiar F, Schreiner W H 1994 Phys. Res. B 49 15105Google Scholar

    [22]

    Men F K, Liu F, Wang P J, Chen C H, Cheng D L, Lin J L, Himpsel F J 2002 Phys. Rev. Lett. 88 096105Google Scholar

    [23]

    Viernow J, Lin J L, Petrovykh D, Leibsle F, Men F, Himpsel F 1998 Appl. Phys. Lett. 72 948Google Scholar

    [24]

    Kirakosian A, Bennewitz R, Crain J N, Fauster T, Lin J L, Petrovykh D Y, Himpsel F J 2001 Appl. Phys. Lett. 79 1608Google Scholar

    [25]

    Wu Q, He W, Liu H L, Ye J, Zhang X Q, Yang H T, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 1547Google Scholar

    [26]

    黎振, 徐超辉, 王群, 付翔 2013 电子工业专用设备 42 4Google Scholar

    Li Z, Xu C H, Wang Q, Fu X 2013 Equipment for Electronic Products Manufacturing 42 4Google Scholar

    [27]

    Dos S M C, Geshev J, Schmidt J E, Teixeira S R, Pereira L G 2000 Phys. Res. B 61 1311Google Scholar

    [28]

    李华, 郭党委 2015 实验技术与管理 32 51Google Scholar

    Li H, Guo D W 2015 Experimental Technology and Management 32 51Google Scholar

  • 图 1  ω-2θ扫描得到的外延Fe膜(110)面的HRXRD图谱

    Fig. 1.  The ω-2θ scan of the (110) plane.

    图 2  室温下不同剂量离子注入的外延Fe膜的归一化面内剩磁极图

    Fig. 2.  Azimuthal dependence of the normalized in-plane remanence for epitaxial Fe films with different dose implantation at room temperature.

    图 3  室温下不同剂量离子注入的外延Fe膜的归一化面内剩磁曲线

    Fig. 3.  Normalized in-plane remanence curves for the epitaxial Fe films with different doses of ion implantation at room temperature.

    图 4  不同剂量离子注入样品的切面高分辨TEM (a) 未注入样品; (b) 辐照剂量为5 × 1015 ions/cm2; (c) 辐照剂量为5 × 1016 ions/cm2

    Fig. 4.  Cross-sectional TEM images for the as-deposited and implanted samples with a series of different N+ dose: (a) The as-deposited samples; (b) the irradiated samples dose of 5 × 1015 ions/cm2; (c) the irradiated samples dose of 5 × 1016 ions/cm2.

    图 5  室温下未注入Fe膜和刻蚀后的Fe膜的归一化面内剩磁极图

    Fig. 5.  Azimuthal dependence of the normalized in-plane remanence for the as-deposited and ion beam etched samples at room temperature.

    图 6  室温下未注入Fe膜和刻蚀后的Fe膜的归一化剩磁曲线

    Fig. 6.  Normalized in-plane remanence curves for the as-deposited and ion beam etched samples at room temperature.

  • [1]

    杨丽 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yang L 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [2]

    Chen C H, Talnagi J W, Liu L F, Vora P, Higgins A, Liu S 2005 IEEE Trans. Magn. 41 3832Google Scholar

    [3]

    李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖 2018 物理学报 67 016104Google Scholar

    Li Z F, Jia Y Y, Liu R D, Xu Y H, Wang G H, Xia X B, Shen W Z 2018 Acta Phys. Sin. 67 016104Google Scholar

    [4]

    Maziewski A, Mazalski P, Kurant Z, Liedke M O, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T 2012 Phys. Rev. B 85 054427Google Scholar

    [5]

    丁斌峰, 相凤华, 王立明, 王洪涛 2012 物理学报 61 046105Google Scholar

    Ding B F, Xiang F H, Wang L M, Wang H T 2012 Acta Phys. Sin. 61 046105Google Scholar

    [6]

    Bali R, Wintz S, Meutzner F, Hübner R, Boucher R, Ünal A A, Valencia S, Neudert A, Potzger K, Bauch J 2014 Nano Lett. 14 435Google Scholar

    [7]

    Jaafar M, Sanz R, Mccord J, Jensen J, Schäfer R, Vázquez M, Asenjo A 2011 Phys. Rev. B 83 094422Google Scholar

    [8]

    McCord J, Schultz L, Fassbender J 2008 Adv. Mater. 20 2090Google Scholar

    [9]

    Kasiuk J, Fedotova J, Przewoźnik J, Kapusta C, Skuratov V, Svito I, Bondariev V, Kołtunowicz T 2017 Acta Phys. Pol. 132 206Google Scholar

    [10]

    Sakamaki M, Amemiya K, Liedke M, Fassbender J, Mazalski P, Sveklo I, Maziewski A 2012 Phys. Rev. B 86 024418Google Scholar

    [11]

    Shin S C, Kim S, Han J, Hong J, Kang S 2011 Appl. Phys. Express 4 116501Google Scholar

    [12]

    Beaujour J M, Kent A D, Ravelosona D, Tudosa I, Fullerton E E 2011 J. Appl. Phys. 109 033917Google Scholar

    [13]

    Mccord J, Gemming T, Schultz L, Fassbender J, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502Google Scholar

    [14]

    Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267Google Scholar

    [15]

    Fassbender J, von Borany J, Mücklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R 2006 Phys. Rev. B 73 184410Google Scholar

    [16]

    Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A 2009 Appl. Phys. Lett. 95 022502Google Scholar

    [17]

    Wei Y P, Gao C X, Dong C H, Ma Z K, Li J G, Xue D S 2014 Appl. Surf. Sci. 293 71Google Scholar

    [18]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818Google Scholar

    [19]

    Ye J, He W, Wu Q, Liu H L, Zhang X Q, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 2148Google Scholar

    [20]

    Liu H L, He W, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 J. Appl. Phys. 112 093916Google Scholar

    [21]

    Rezende S M, Moura J, de Aguiar F, Schreiner W H 1994 Phys. Res. B 49 15105Google Scholar

    [22]

    Men F K, Liu F, Wang P J, Chen C H, Cheng D L, Lin J L, Himpsel F J 2002 Phys. Rev. Lett. 88 096105Google Scholar

    [23]

    Viernow J, Lin J L, Petrovykh D, Leibsle F, Men F, Himpsel F 1998 Appl. Phys. Lett. 72 948Google Scholar

    [24]

    Kirakosian A, Bennewitz R, Crain J N, Fauster T, Lin J L, Petrovykh D Y, Himpsel F J 2001 Appl. Phys. Lett. 79 1608Google Scholar

    [25]

    Wu Q, He W, Liu H L, Ye J, Zhang X Q, Yang H T, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 1547Google Scholar

    [26]

    黎振, 徐超辉, 王群, 付翔 2013 电子工业专用设备 42 4Google Scholar

    Li Z, Xu C H, Wang Q, Fu X 2013 Equipment for Electronic Products Manufacturing 42 4Google Scholar

    [27]

    Dos S M C, Geshev J, Schmidt J E, Teixeira S R, Pereira L G 2000 Phys. Res. B 61 1311Google Scholar

    [28]

    李华, 郭党委 2015 实验技术与管理 32 51Google Scholar

    Li H, Guo D W 2015 Experimental Technology and Management 32 51Google Scholar

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [3] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [4] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [5] 许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟. 铁基合金薄带多次等温回火特性的研究. 物理学报, 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [6] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [7] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性. 物理学报, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [8] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [9] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒. 物理学报, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [10] 杨义涛, 张崇宏, 周丽宏, 李炳生, 张丽卿. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [11] 胡良均, 陈涌海, 叶小玲, 王占国. Mn离子注入InAs/GaAs量子点结构材料的光电性质研究. 物理学报, 2007, 56(8): 4930-4935. doi: 10.7498/aps.56.4930
    [12] 敖 琪, 张瓦利, 张 熠, 吴建生. Nd-Fe-B/FeCo多层纳米复合膜的结构和磁性. 物理学报, 2007, 56(2): 1135-1140. doi: 10.7498/aps.56.1135
    [13] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [14] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [15] 钟红梅, 陈效双, 王金斌, 夏长生, 王少伟, 李志锋, 徐文兰, 陆 卫. 基于离子注入技术的ZnMnO半导体材料的制备及光谱表征. 物理学报, 2006, 55(4): 2073-2077. doi: 10.7498/aps.55.2073
    [16] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究. 物理学报, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [17] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [18] 郑思孝, 罗顺忠, 刘仲阳, 龙兴贵, 王培禄, 彭述明, 廖小东, 刘 宁. 纳米晶钛膜中氦注入的保持剂量. 物理学报, 2004, 53(2): 555-560. doi: 10.7498/aps.53.555
    [19] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [20] 刘雪芹, 王印月, 甄聪棉, 张静, 杨映虎, 郭永平. 离子注入和固相外延制备Si1-x-yGexCy半导体薄膜. 物理学报, 2002, 51(10): 2340-2343. doi: 10.7498/aps.51.2340
计量
  • 文章访问数:  5293
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-23
  • 修回日期:  2019-04-02
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回