Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional study on the structural and electronic properties of fullerene-barbituric acid and its dimmer

Jiang Yan-Ling Fu Shi-You Deng Kai-Ming Tang Chun-Mei Tan Wei-Shi Huang De-Cai Liu Yu-Zhen Wu Hai-Ping

Citation:

Density functional study on the structural and electronic properties of fullerene-barbituric acid and its dimmer

Jiang Yan-Ling, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Tan Wei-Shi, Huang De-Cai, Liu Yu-Zhen, Wu Hai-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Geometric and electronic properties of fullerene-barbituric acid and its dimmer have been studied using density functional theory (DFT) at BLYP level with DNP basis sets. The calculation results indicate that the only one stable geometry of the fullerene-barbituric acid is that with [6,6] close-bond structure, and the effects of the barbituric acid on the cage structure is mainly in the local region neighboring the barbituric acid. Among the three isomers of the fullerene-barbituric acid dimmers, one can come to the conclusion both from the energy gap and from relative energy that the [6,6]—[6,6] structure is the most stable one. With respect to the electronic structures, the donor-acceptor system corresponds to C60 fullerene-barbituric acid, ie. electron transfers from the fullerene cage to the barbituric acid. The frontier orbitals and spin population show that C60 fullerene-barbituric acid has similar electromagnetic properties of C60, but its stability is reduced, so that the addition reaction would easily take place to form its dimmer. For the C60 fullerene-barbituric acid dimmer, the Mulliken analysis shows there are 0104e and 0106e charge transfers to the four carbons from their neighboring carbons, and the farther the atoms is, the less charge it loses. Compared with those of the C60 fullerene-barbituric acid, the energy gap is changed from 152eV to 1.45eV, while the distribution of highest occupied molecular orbital (HOMO) is little changed but that of lowest unoccupied molecular orbital (LUMO) is changed a lot.
Metrics
  • Abstract views:  7466
  • PDF Downloads:  1095
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2007
  • Accepted Date:  15 November 2007
  • Published Online:  05 March 2008

/

返回文章
返回