Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis

Li Yan-Lin Xue Qian-Zhong Du Chao-Hai Hao Bao-Liang

Citation:

Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis

Li Yan-Lin, Xue Qian-Zhong, Du Chao-Hai, Hao Bao-Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In contrast to dielectric photonic crystals, the propagation characteristics of metallic photonic crystals are of great importance in millimeter wave and submillimeter wave applications. It is convenient and reliable to get the band diagrams and field distributions of photonic crystals after solutions of the eigenmode equations, which is derived from the Yee-mesh-based finite-difference frequency-domain method. However, this method cannot be used for the analysis of metallic photonic crystals because of the essential distinctions between metal and dielectric. Based on this method, we derive eigenmode equations for two-dimensional metallic photonic crystals by introducing the metal surface boundary conditions. And then, after some numerical calculations, the transverse electric mode and the transverse magnetic mode global band gaps of different lattice structures are obtained, including both square lattice and triangular lattice. Finally, we discuss the advantages of metallic periodic structures in mode selection and device integration by the comparison between metallic photonic band gap and dielectric photonic band gap.
    [1]

    [1]Yablonoviteh E 1987 Phys.Rev.Lett.58 2059

    [2]

    [2]John S 1987 Phys.Rev.Lett.58 2486

    [3]

    [3]Attila M, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys.Rev.Lett.77 3787

    [4]

    [4]Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [5]

    [5]Sigalas M M, Chan C T, Ho K M, Soukoulis C M 1995 Phys. Rev. B 52 11744

    [6]

    [6]Sievenpiper D F, Sickmiller M E, Yablonovitch E 1996 Phys.Rev.Lett.76 2480

    [7]

    [7]Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys.Rev.Lett.76 4773

    [8]

    [8]Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R, Temkin R J 2001 Phys. Rev. Special Topics: Accelerators and Beams 4 042001

    [9]

    [9]Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [10]

    ]Dong J W, Hu X H, Wang H Z 2007 Chin. Phys. 16 1057

    [11]

    ]Kuzimiak V, Maradudin, Pincemin F 1994 Phys. Rev. B 50 1683

    [12]

    ]Gong Y B, Lu Z G, Wang W X, Wei Y Y 2006 Acta Phys. Sin. 55 3590 (in Chinese) [宫玉彬、路志刚、王文祥、魏彦玉 2006 物理学报 55 3590]

    [13]

    ]Qiu M, He S L 2000 J. App. Phys. 87 8268

    [14]

    ]Chen H B, Chen X S, Li H J, Lu W, Wang L L, Wang S W, Xia H, Zeng Y, Zhang J B, Zhou R L 2006 Acta Phys. Sin. 57 3506 (in Chinese) [陈洪波、陈效双、李宏建、陆卫、王玲玲、王少伟、夏辉、曾勇、张建标、周仁龙 2008 物理学报 57 3506]

    [15]

    ]Pendry J B, Mackinnon A 1992 Phys. Rev. Lett. 69 2772

    [16]

    ]Sigalas M, Soukoulis C M, Economou E N 1993 Phys. Rev.B 48 14121

    [17]

    ]Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese) [郝保良、刘濮鲲、唐昌建 2006 物理学报 55 1862]

    [18]

    ]Zhu Z M, Brown T G 2002 Opt. Express 10 853

    [19]

    ]Yu C P, Chang H C 2004 Opt. Express 12 1397

    [20]

    ]Chang H C, Yu C P 2004 Opt. Express 12 6165

    [21]

    ]Ando T, Nakayama H, Numata S, Yamauchi J, Nakano H 2002 J. Lightwave Technol. 20 1627

    [22]

    ]Guo S P, Wu F, Albin S 2004 Opt. Express 12 1741

    [23]

    ]Shen L F, He S L, Wu L 2002 Acta Phys. Sin. 51 1133 (in Chinese) [沈林放、何赛灵、吴良 2002 物理学报 51 1133]

    [24]

    ]Guo J Y, Chen H, Li H Q, Zhang Y W 2008 Chin. Phys. 17 2544

    [25]

    ]Berenger J P 1994 J. Comput.Phys. 114 185

    [26]

    ]Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 J. App. Phys. 91 960

    [27]

    ]Cai X H, Zheng W H, Ma X T, Ren G, Xia J B 2005 Chin. Phys. 14 2507

    [28]

    ]Arriaga J, Ward A J, Pendry J B 1999 Phys. Rev. B 59 1874

    [29]

    ]Xiao S S, Shen L F, He S L 2002 Acta Phys. Sin. 51 2858 (in Chinese) [肖三水、沈林放、何赛灵 2002 物理学报 51 2858]

    [30]

    ]Chen X W, Lin X S, Lan S 2005 Chin.Phys. 14 366

  • [1]

    [1]Yablonoviteh E 1987 Phys.Rev.Lett.58 2059

    [2]

    [2]John S 1987 Phys.Rev.Lett.58 2486

    [3]

    [3]Attila M, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys.Rev.Lett.77 3787

    [4]

    [4]Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [5]

    [5]Sigalas M M, Chan C T, Ho K M, Soukoulis C M 1995 Phys. Rev. B 52 11744

    [6]

    [6]Sievenpiper D F, Sickmiller M E, Yablonovitch E 1996 Phys.Rev.Lett.76 2480

    [7]

    [7]Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys.Rev.Lett.76 4773

    [8]

    [8]Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R, Temkin R J 2001 Phys. Rev. Special Topics: Accelerators and Beams 4 042001

    [9]

    [9]Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [10]

    ]Dong J W, Hu X H, Wang H Z 2007 Chin. Phys. 16 1057

    [11]

    ]Kuzimiak V, Maradudin, Pincemin F 1994 Phys. Rev. B 50 1683

    [12]

    ]Gong Y B, Lu Z G, Wang W X, Wei Y Y 2006 Acta Phys. Sin. 55 3590 (in Chinese) [宫玉彬、路志刚、王文祥、魏彦玉 2006 物理学报 55 3590]

    [13]

    ]Qiu M, He S L 2000 J. App. Phys. 87 8268

    [14]

    ]Chen H B, Chen X S, Li H J, Lu W, Wang L L, Wang S W, Xia H, Zeng Y, Zhang J B, Zhou R L 2006 Acta Phys. Sin. 57 3506 (in Chinese) [陈洪波、陈效双、李宏建、陆卫、王玲玲、王少伟、夏辉、曾勇、张建标、周仁龙 2008 物理学报 57 3506]

    [15]

    ]Pendry J B, Mackinnon A 1992 Phys. Rev. Lett. 69 2772

    [16]

    ]Sigalas M, Soukoulis C M, Economou E N 1993 Phys. Rev.B 48 14121

    [17]

    ]Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese) [郝保良、刘濮鲲、唐昌建 2006 物理学报 55 1862]

    [18]

    ]Zhu Z M, Brown T G 2002 Opt. Express 10 853

    [19]

    ]Yu C P, Chang H C 2004 Opt. Express 12 1397

    [20]

    ]Chang H C, Yu C P 2004 Opt. Express 12 6165

    [21]

    ]Ando T, Nakayama H, Numata S, Yamauchi J, Nakano H 2002 J. Lightwave Technol. 20 1627

    [22]

    ]Guo S P, Wu F, Albin S 2004 Opt. Express 12 1741

    [23]

    ]Shen L F, He S L, Wu L 2002 Acta Phys. Sin. 51 1133 (in Chinese) [沈林放、何赛灵、吴良 2002 物理学报 51 1133]

    [24]

    ]Guo J Y, Chen H, Li H Q, Zhang Y W 2008 Chin. Phys. 17 2544

    [25]

    ]Berenger J P 1994 J. Comput.Phys. 114 185

    [26]

    ]Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 J. App. Phys. 91 960

    [27]

    ]Cai X H, Zheng W H, Ma X T, Ren G, Xia J B 2005 Chin. Phys. 14 2507

    [28]

    ]Arriaga J, Ward A J, Pendry J B 1999 Phys. Rev. B 59 1874

    [29]

    ]Xiao S S, Shen L F, He S L 2002 Acta Phys. Sin. 51 2858 (in Chinese) [肖三水、沈林放、何赛灵 2002 物理学报 51 2858]

    [30]

    ]Chen X W, Lin X S, Lan S 2005 Chin.Phys. 14 366

  • [1] Hong Wen-Peng, Lan Jing-Rui, Li Hao-Ran, Li Bo-Yu, Niu Xiao-Juan, Li Yan. Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method. Acta Physica Sinica, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [2] Fu Tao, Ouyang Zheng-Biao. Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal. Acta Physica Sinica, 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [3] Fu Tao, Yang Zi-Qiang, Ouyang Zheng-Biao. Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure. Acta Physica Sinica, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [4] Wang Dong, Xu Sha, Cao Yan-Wei, Qin Fen. Design of a metallic photonic crystal high power microwave mode converter. Acta Physica Sinica, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [5] Qiao Hai-Liang, Wang Yue, Chen Zai-Gao, Zhang Dian-Hui. Full-vectorial finite-difference analysis of modes in waveguide with arbitrary shape. Acta Physica Sinica, 2013, 62(7): 070204. doi: 10.7498/aps.62.070204
    [6] Li Chun-Zao, Liu Shao-Bin, Kong Xiang-Kun, Bian Bo-Rui, Zhang Xue-Yong. Effects of external magnetic field and temperature on low frequency photonic band width in cryogenic superconducting photonic crystals. Acta Physica Sinica, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [7] Yuan Gui-Fang, Han Li-Hong, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Two-dimensional photonic crystal band gap characteristics. Acta Physica Sinica, 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [8] Yang Yi-Biao, Wang Shuan-Feng, Li Xiu-Jie, Wang Yun-Cai, Liang Wei. Band gap characteristics of two-dimensional photonic crystals made of a triangular lattice of dielectric rods. Acta Physica Sinica, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [9] Ren Xiao-Bin, Zhai Tian-Rui, Ren Zhi, Lin Jing, Zhou Jing, Liu Da-He. The effect of nonlinear exposure on bandgap of three-dimensional holographic photonic crystal. Acta Physica Sinica, 2009, 58(5): 3208-3213. doi: 10.7498/aps.58.3208
    [10] Fang Xiao-Hui, Chai Lu, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Numerical analysis for structure optimization of seven-core photonic crystal fibers. Acta Physica Sinica, 2009, 58(4): 2495-2500. doi: 10.7498/aps.58.2495
    [11] Zhang Hao, Zhao Jian-Lin, Zhang Xiao-Juan. Numerical analysis of two-dimensional magnetophotonic crystals with structural defects. Acta Physica Sinica, 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [12] Cheng Xu-Pan, Cao Quan-Xi. Study of complete bandgap of two-dimensional columnar photonic crystals. Acta Physica Sinica, 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [13] Yin Hai-Rong, Gong Yu-Bin, Wei Yan-Yu, Yue Ling-Na, Lu Zhi-Gang, Gong Hua-Rong, Huang Min-Zhi, Wang Wen-Xiang. Mode and band analysis of finite dielectric photonic crystals. Acta Physica Sinica, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [14] Yang Guang-Jie, Kong Fan-Min, Li Kang, Mei Liang-Mo. Several methods for dealing with metal in FDTD. Acta Physica Sinica, 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [15] Using finite-difference time-domain method to realize computer simulation of strut. Acta Physica Sinica, 2007, 56(12): 6924-6930. doi: 10.7498/aps.56.6924
    [16] Zhang Hao, Zhao Jian-Lin, Zhang Xiao-Juan, Di Nan. Two-dimensional magnetophotonic crystals and analysis of the mode field. Acta Physica Sinica, 2007, 56(6): 3546-3552. doi: 10.7498/aps.56.3546
    [17] Liu Huan, Yao Jian-Quan, Li En-Bang, Wen Wu-Qi, Zhang Qiang, Wang Peng. Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures. Acta Physica Sinica, 2006, 55(1): 230-237. doi: 10.7498/aps.55.230
    [18] Lu Zhi-Gang, Gong Yu-Bin, Wei Yan-Yu, Wang Wen-Xiang. Study of 2D metallic photonic band gap structures. Acta Physica Sinica, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [19] Wang Gang, Wen Ji-Hong, Han Xiao-Yun, Zhao Hong-Gang. Finite difference time domain method for the study of band gap in two-dimensiona l phononic crystals. Acta Physica Sinica, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
    [20] ZHENG JUN, YE ZHI-CHENG, TANG WEI-GUO, LIU DA-HE. PHOTONIC FORBIDDEN BAND IN VOLUME HOLOGRAMS. Acta Physica Sinica, 2001, 50(11): 2144-2148. doi: 10.7498/aps.50.2144
Metrics
  • Abstract views:  7161
  • PDF Downloads:  1192
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2009
  • Accepted Date:  03 August 2009
  • Published Online:  05 February 2010

/

返回文章
返回