Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of substrate resistivity and interface defect density on performance of solar cell with silicon heterojunctions

Zhou Jun Di Ming-Dong Sun Tie-Tun Sun Yong-Tang Wang Hao

Citation:

Effects of substrate resistivity and interface defect density on performance of solar cell with silicon heterojunctions

Zhou Jun, Di Ming-Dong, Sun Tie-Tun, Sun Yong-Tang, Wang Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For silicon heterojunction solar cell with p-type a-Si:H back surface field, the effects of substrate resistivity on the performance of solar cell with different defect densities on the front and the rear surfaces of the p-type c-Si wafer are investigated numerically by computer simulation. The results indicate that the optimized resistivity of the substrate (ρop) is related to the interface defect density on the front surface of c-Si wafer (Dit1), and ρopincreases with the increase of Dit1.The value scale of resistivity of substrate is influenced greatly by the interface defect density on the rear surface of c-Si wafer (Dit2) for ρ>ρop, and the larger the value of Dit2, the smaller will the range of acceptable ρ value be.
    [1]

    Jagannathan B, Anderson W A 1996 Sol. Energy Mater. Sol. Cells 44 165

    [2]

    Tardon S, Rosch M, Bruggemann R, Unold T, Bauer G H 2004 J. Non-Cryst. Solids 338—340 444

    [3]

    Jagannathan B, Anderson W A, Coleman J 1997 Sol. Energy Mater. Sol. Cells 46 289

    [4]

    Gudovskikh A S, Kleider J P, Damon-Lacoste J, Cabarrocas P R I, Veschetti Y, Muller J C, Ribeyron P J, Rolland E 2006 Thin Solid Films 511—512 385

    [5]

    Ok Y W, Seong T Y, Kim D W, Kim S K, Lee J C, Yoon K H, Song J S 2007 Sol. Energy Mater. Sol. Cells 91 1366

    [6]

    Zhao L, Li H L, Zhou C L, Diao H W, Wang W J 2009 Solar Energy 83 812

    [7]

    Page M R, Iwaniczko E, Xu Y, Wang Q, Yan Y, Roybal L, Branz H M, Wang T H 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Hawaii: IEEE) pp1485—1488

    [8]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Acta Phys. Sin. 57 3213 (in Chinese) [赵 雷、周春兰、李海玲、刁宏伟、王文静 2008 物理学报 57 3212]

    [9]

    von Maydell K, Windgassen H, Nositschka W A, Rau U, Rostan P J, Henze J, Schmidt J, Scherff M, Fahrner W, Borchert D, Tardon S, Brüggemann R, Stiebig H, Schmidt M 2005 Proceedings of the 20th European Photovoltaic Solar Energy Conference (Barcelona: WIP-Renewable Energies) pp822—825

    [10]

    Conrad E, von Maydell K, Angermann H, Schubert C, Schmidt M 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Berlin:IEEE) pp1263—1266

    [11]

    Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergmann R B, Werner J H 2000 J. Appl. Phys. 87 2639

    [12]

    Froitzheim A, Brendel K, Elstner L, Fuhs W, Kliefoth K, Schmidt M 2002 J. Non-Cryst. Solids 299—302 663

    [13]

    Gudovskikh A S, Kleider J P, Stangl R, Schmidt M, Fuhs W 2004 Proceedings of 19th European Photovoltaic Solar Energy Conference (Paris: WIP-Renewable Energies) pp697—700

    [14]

    Stangl R, Froitzheim A, Schmidt M, Fuhs W 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (Osaka:IEEE) pp1005—1008

    [15]

    Froitzheim A, Stangl R, Elstner L, Schmidt M, Fuhs W 2002 Conference Record of the 29th IEEE Photovoltaic Specialists Conference (New Orleans:IEEE) pp1238—1241

    [16]

    Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123

    [17]

    Hernández-Como N, Morales-Acevedo A 2008 Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (Mexico City:IEEE) pp449—454

    [18]

    Green M A 1987 Solar Cells: Operating Principles, Technology and System Applications (Englewood Cliffs: Prentice-Hall) p54

    [19]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [20]

    Yang W J, Ma Z Q, Tang X, Feng C B, Zhao W G, Shi P P 2008 Solar Energy 82 106

    [21]

    De Wolfa S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104

  • [1]

    Jagannathan B, Anderson W A 1996 Sol. Energy Mater. Sol. Cells 44 165

    [2]

    Tardon S, Rosch M, Bruggemann R, Unold T, Bauer G H 2004 J. Non-Cryst. Solids 338—340 444

    [3]

    Jagannathan B, Anderson W A, Coleman J 1997 Sol. Energy Mater. Sol. Cells 46 289

    [4]

    Gudovskikh A S, Kleider J P, Damon-Lacoste J, Cabarrocas P R I, Veschetti Y, Muller J C, Ribeyron P J, Rolland E 2006 Thin Solid Films 511—512 385

    [5]

    Ok Y W, Seong T Y, Kim D W, Kim S K, Lee J C, Yoon K H, Song J S 2007 Sol. Energy Mater. Sol. Cells 91 1366

    [6]

    Zhao L, Li H L, Zhou C L, Diao H W, Wang W J 2009 Solar Energy 83 812

    [7]

    Page M R, Iwaniczko E, Xu Y, Wang Q, Yan Y, Roybal L, Branz H M, Wang T H 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Hawaii: IEEE) pp1485—1488

    [8]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Acta Phys. Sin. 57 3213 (in Chinese) [赵 雷、周春兰、李海玲、刁宏伟、王文静 2008 物理学报 57 3212]

    [9]

    von Maydell K, Windgassen H, Nositschka W A, Rau U, Rostan P J, Henze J, Schmidt J, Scherff M, Fahrner W, Borchert D, Tardon S, Brüggemann R, Stiebig H, Schmidt M 2005 Proceedings of the 20th European Photovoltaic Solar Energy Conference (Barcelona: WIP-Renewable Energies) pp822—825

    [10]

    Conrad E, von Maydell K, Angermann H, Schubert C, Schmidt M 2006 Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Berlin:IEEE) pp1263—1266

    [11]

    Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergmann R B, Werner J H 2000 J. Appl. Phys. 87 2639

    [12]

    Froitzheim A, Brendel K, Elstner L, Fuhs W, Kliefoth K, Schmidt M 2002 J. Non-Cryst. Solids 299—302 663

    [13]

    Gudovskikh A S, Kleider J P, Stangl R, Schmidt M, Fuhs W 2004 Proceedings of 19th European Photovoltaic Solar Energy Conference (Paris: WIP-Renewable Energies) pp697—700

    [14]

    Stangl R, Froitzheim A, Schmidt M, Fuhs W 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (Osaka:IEEE) pp1005—1008

    [15]

    Froitzheim A, Stangl R, Elstner L, Schmidt M, Fuhs W 2002 Conference Record of the 29th IEEE Photovoltaic Specialists Conference (New Orleans:IEEE) pp1238—1241

    [16]

    Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123

    [17]

    Hernández-Como N, Morales-Acevedo A 2008 Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (Mexico City:IEEE) pp449—454

    [18]

    Green M A 1987 Solar Cells: Operating Principles, Technology and System Applications (Englewood Cliffs: Prentice-Hall) p54

    [19]

    Zhao L, Zhou C L, Li H L, Diao H W, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [20]

    Yang W J, Ma Z Q, Tang X, Feng C B, Zhao W G, Shi P P 2008 Solar Energy 82 106

    [21]

    De Wolfa S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104

  • [1] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [2] Xiao You-Peng, Wang Huai-Ping, Li Gang-Long. Numerical simulation of graphene/Ag2ZnSnSe4 induced p-n junction solar cell. Acta Physica Sinica, 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [3] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [4] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [5] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [6] Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang. Physical mechanism and optimal design of silicon heterojunction solar cells. Acta Physica Sinica, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [7] Zhang Xiao-Yu, Zhang Li-Ping, Ma Zhong-Quan, Liu Zheng-Xin. Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells. Acta Physica Sinica, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [8] Wang Li, Zhang Xiao-Dan, Yang Xu, Wei Chang-Chun, Zhang De-Kun, Wang Guang-Cai, Sun Jan, Zhao Ying. Study of the contact property between BZO and p-a-SiC in amorphous silicon solar cell. Acta Physica Sinica, 2013, 62(5): 058801. doi: 10.7498/aps.62.058801
    [9] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [10] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [11] Zhang Xiao-Dan, Sun Fu-He, Xu Sheng-Zhi, Wang Guang-Hong, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. Performance optimization of p-i-n type microcrystalline silicon thin films solar cells deposited in single chamber. Acta Physica Sinica, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [12] Zhong Chun-Liang, Geng Kui-Wei, Yao Ruo-He. S-shaped J-V characteristic of a-Si:H/c-Si heterojunction solar cell. Acta Physica Sinica, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [13] Zhang Yong, Liu Yan, Lü Bin, Tang Nai-Yun, Wang Ji-Qing, Zhang Hong-Ying. Influence of barrier height of the front contact on the amorphous silicon and microcrystalline silicon heterojunction solar cells. Acta Physica Sinica, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [14] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] Han Xiao-Yan, Hou Guo-Fu, Li Gui-Jun, Zhang Xiao-Dan, Yuan Yu-Jie, Zhang De-Kun, Chen Xin-Liang, Wei Chang-Chun, Sun Jian, Geng Xin-Hua. Influence of low rate p/i interface layer on the performance of high growth rate microcrystalline silicon solar cells. Acta Physica Sinica, 2008, 57(8): 5284-5289. doi: 10.7498/aps.57.5284
    [16] Zhao Lei, Zhou Chun-Lan, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation. Acta Physica Sinica, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [17] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. NIP a-Si:H solar cells on stanless steel with p-type nc-Si:H window layer. Acta Physica Sinica, 2005, 54(6): 2945-2949. doi: 10.7498/aps.54.2945
    [18] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [19] PENG YING-CAI, XU GANG-YI, HE YU-LIANG, LIU MING, LI YUE-XIA. CARRIER TRANSPORT PROPERTIES OF THE (n)nc-Si:H/(p)c-Si HETEROJUNCTION. Acta Physica Sinica, 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
    [20] XIA YI-BEN, AN QI-LIN, JU JIAN-HUA, SHI WEI-MIN, WANG HONG. INVESTIGATION OF a-C:H FILMS DEPOSITED ON SILICON SOLAR CELL AS ANTIREFLECTIVE COATING. Acta Physica Sinica, 1993, 42(1): 46-50. doi: 10.7498/aps.42.46
Metrics
  • Abstract views:  8755
  • PDF Downloads:  941
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2010
  • Accepted Date:  04 May 2010
  • Published Online:  05 June 2010

/

返回文章
返回