Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of resonance properties of strain graphene nanoribbons

Gu Fang Zhang Jia-Hong Yang Li-Juan Gu Bin

Citation:

Molecular dynamics simulation of resonance properties of strain graphene nanoribbons

Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Starting from the energy conversion and energy conservation law in the constant-NVE ensemble, the molecular dynamics method using the COMPASS force field was applied to investigate the dynamic properties of graphene nanoribbons (GNRs) together with the GNR-based strain sensors. The following results were obtained: (a) the nonlinear response dominates the dynamic behavior of GNRs, and their ultra-high fundamental frequencies are closely related with the length and boundary conditions; (b) the effect of uniaxial tensile strain on the fundamental frequencies of GNRs is significant and strongly depends on boundary conditions, and the GNR-based strain sensor clamped on four edges has a higher frequency shift, and its sensitivity is up to 7800 Hz / nanostrain, much higher than that of carbon nanotube-based strain sensor with the same length; (c) the resonant characteristics of GNRs and GNR-based strain sensors are insensitive to the chirality. The obtained results suggest that, through cutting the appropriate size and setting the boundary conditions, the GNRs could be used to design a new generation of nanoelectromechanical system (NEMS) resonators and strain sensors, owing to their ultra-low density and ultra-high fundamental frequencies as well as ultra-high sensitivity without considering the impact of chirality.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotech. 3 491

    [3]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nature Nanotech. 3 654

    [4]

    Darancet P, Olevano V, Mayou D 2009 Phys. Rev. Lett. 102 136803

    [5]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [6]

    Liao W, Zhou G, Xi F 2008 J. Appl. Phys. 104 126105

    [7]

    Liu J, Wright A R, Zhang C, M Z 2008 Appl. Phys. Lett. 93 041106

    [8]

    Chang C P, Lu C L, Shyu F L, Chen R B, Fang Y K, Lin M F 2004 Carbon 42 2975

    [9]

    Abanin D A, Levitov L S 2007 Science 317 641

    [10]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [11]

    Garcia-Sanchez D, van der Zande A M, San Paulo A, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399

    [12]

    Chen C Y, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nature Nanotech. 4 861

    [13]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, Lü L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、 杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛2005 物理学报 54 4251]

    [14]

    Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I, Ajayan P M 2008 Nano Res 1 116

    [15]

    Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [16]

    Gunlycke D, White C T 2008 Phys. Rev. B 77 115116

    [17]

    Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704

    [18]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平、徐慧、林 峰2009 物理学报 58 4132]

    [19]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009物理学报 58 7156]

    [20]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [21]

    Sakhaee-Pour A, Ahmadian M T, Naghdabadi R 2008 Nanotechnology 19 085702

    [22]

    Atalaya J, Isacsson A, Kinaret J M 2008 Nano Lett. 8 4196

    [23]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 145 168

    [24]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 147 336

    [25]

    Dai M D, Eom K, Kim C W 2009 Appl. Phys. Lett. 95 203104

    [26]

    Sadeghi M, Naghdabadi R 2010 Nanotechnology 21 105705

    [27]

    Girit  O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [28]

    Ritter K A, Lyding J W 2009 Nature Mater. 8 235

    [29]

    Zhou J, Huang R 2008 J. Mech. Phys. Solids 56 1609

    [30]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [31]

    Bu H, ChenY F, Zou M, Yi H, Bi K D, Ni Z H 2009 Phys. Lett. A 373 3359

    [32]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Nanotechnology 21 115709

    [33]

    Li Y, Qiu X M, Yang F,Wang X S, Yin Y J 2008 Nanotechnology 19 165502

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotech. 3 491

    [3]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nature Nanotech. 3 654

    [4]

    Darancet P, Olevano V, Mayou D 2009 Phys. Rev. Lett. 102 136803

    [5]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [6]

    Liao W, Zhou G, Xi F 2008 J. Appl. Phys. 104 126105

    [7]

    Liu J, Wright A R, Zhang C, M Z 2008 Appl. Phys. Lett. 93 041106

    [8]

    Chang C P, Lu C L, Shyu F L, Chen R B, Fang Y K, Lin M F 2004 Carbon 42 2975

    [9]

    Abanin D A, Levitov L S 2007 Science 317 641

    [10]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [11]

    Garcia-Sanchez D, van der Zande A M, San Paulo A, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399

    [12]

    Chen C Y, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nature Nanotech. 4 861

    [13]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, Lü L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、 杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛2005 物理学报 54 4251]

    [14]

    Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I, Ajayan P M 2008 Nano Res 1 116

    [15]

    Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [16]

    Gunlycke D, White C T 2008 Phys. Rev. B 77 115116

    [17]

    Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704

    [18]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平、徐慧、林 峰2009 物理学报 58 4132]

    [19]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009物理学报 58 7156]

    [20]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [21]

    Sakhaee-Pour A, Ahmadian M T, Naghdabadi R 2008 Nanotechnology 19 085702

    [22]

    Atalaya J, Isacsson A, Kinaret J M 2008 Nano Lett. 8 4196

    [23]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 145 168

    [24]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 147 336

    [25]

    Dai M D, Eom K, Kim C W 2009 Appl. Phys. Lett. 95 203104

    [26]

    Sadeghi M, Naghdabadi R 2010 Nanotechnology 21 105705

    [27]

    Girit  O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [28]

    Ritter K A, Lyding J W 2009 Nature Mater. 8 235

    [29]

    Zhou J, Huang R 2008 J. Mech. Phys. Solids 56 1609

    [30]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [31]

    Bu H, ChenY F, Zou M, Yi H, Bi K D, Ni Z H 2009 Phys. Lett. A 373 3359

    [32]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Nanotechnology 21 115709

    [33]

    Li Y, Qiu X M, Yang F,Wang X S, Yin Y J 2008 Nanotechnology 19 165502

  • [1] Yuan Yong-Kai, Chen Qian, Gao Ting-Hong, Liang Yong-Chao, Xie Quan, Tian Ze-An, Zheng Quan, Lu Fei. Molecular dynamics simulations of GaAs crystal growth under different strains. Acta Physica Sinica, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [3] Zuo Min, Liao Wen-Hu, Wu Dan, Lin Li-E. Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes. Acta Physica Sinica, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [4] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] Xuan Sheng-Jie, Liu Yan. Control of skyrmion movement in nanotrack by using periodic strain. Acta Physica Sinica, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [7] Lan Sheng, Li Kun, Gao Xin-Yun. Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects. Acta Physica Sinica, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [8] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [9] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [10] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [11] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [12] Wang Yu-Zhen, Ma Ying, Zhou Yi-Chun. Molecular dynamics study of epitaxial compressive strain influence on the radiation resistance of BaTiO3 ferroelectrics. Acta Physica Sinica, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [13] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [14] Lu Guo, Wang Shuai-Chuang, Zhang Guang-Cai, Xu Ai-Guo. Moment method for strain analysis and its application in molecular dynamics. Acta Physica Sinica, 2012, 61(7): 073102. doi: 10.7498/aps.61.073102
    [15] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [16] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Effect of wire width on strain distribution and bandgap in quantum-wire nanostructures based on continuum elasticity theory. Acta Physica Sinica, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] Cheng Bu-Wen, Yao Fei, Xue Chun-Lai, Zhang Jian-Guo, Li Chuan-Bo, Mao Rong-Wei, Zuo Yu-Hua, Luo Li-Ping, Wang Qi-Ming. A method to estimate the strain state of SiGe/Si by measuring the bandgap. Acta Physica Sinica, 2005, 54(9): 4350-4353. doi: 10.7498/aps.54.4350
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  7943
  • PDF Downloads:  1402
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2010
  • Accepted Date:  26 August 2010
  • Published Online:  15 May 2011

/

返回文章
返回